樹林的邊界是直線l(如圖所示),一只兔子在河邊喝水時發(fā)現(xiàn)了一只狼,兔子和狼分別位于l的垂線AC上的點A點B點處,AB=BC=a(a為正常數(shù)),若兔子沿AD方向以速度2μ向樹林逃跑,同時狼沿線段BM(M∈AD)方向以速度μ進行追擊(μ為正常數(shù)),若狼到達M處的時間不多于兔子到達M處的時間,狼就會吃掉兔子.
(1)求兔子被狼吃掉的點的區(qū)域面積S(a);
(2)若兔子要想不被狼吃掉,求θ(θ=∠DAC)的取值范圍.

解:(1)如圖建立坐標系xOy,設(shè) A(0,2a),B(0,a),M(x,y),
,得.所以M在以為圓心,半徑為的圓及其內(nèi)部.
所以,.-------(8分)
(2)設(shè)lAD:y=kx+2a(k≠0),由
可得 0<∠ADB<,所以,.---------(6分)
分析:(1)如圖建立坐標系xOy,設(shè) A(0,2a),B(0,a),M(x,y),由,求得.由此求得圓的面積S(a)的值.
(2)設(shè)lAD:y=kx+2a(k≠0),由求得斜率k的范圍,即可求得θ的范圍.
點評:本題主要考查圓的標準方程,直線和圓的位置關(guān)系,直線的傾斜角和斜率的關(guān)系,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

樹林的邊界是直線l(如圖所示),一只兔子在河邊喝水時發(fā)現(xiàn)了一只狼,兔子和狼分別位于l的垂線AC上的點A點B點處,AB=BC=a(a為正常數(shù)),若兔子沿AD方向以速度2μ向樹林逃跑,同時狼沿線段BM(M∈AD)方向以速度μ進行追擊(μ為正常數(shù)),若狼到達M處的時間不多于兔子到達M處的時間,狼就會吃掉兔子.
(1)求兔子被狼吃掉的點的區(qū)域面積S(a);
(2)若兔子要想不被狼吃掉,求θ(θ=∠DAC)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省無錫一中高二(上)期中數(shù)學試卷(成志班)(解析版) 題型:解答題

樹林的邊界是直線l(如圖所示),一只兔子在河邊喝水時發(fā)現(xiàn)了一只狼,兔子和狼分別位于l的垂線AC上的點A點B點處,AB=BC=a(a為正常數(shù)),若兔子沿AD方向以速度2μ向樹林逃跑,同時狼沿線段BM(M∈AD)方向以速度μ進行追擊(μ為正常數(shù)),若狼到達M處的時間不多于兔子到達M處的時間,狼就會吃掉兔子.
(1)求兔子被狼吃掉的點的區(qū)域面積S(a);
(2)若兔子要想不被狼吃掉,求θ(θ=∠DAC)的取值范圍.

查看答案和解析>>

同步練習冊答案