(本題滿(mǎn)分13分)已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

解析試題分析:
解:(Ⅰ)設(shè)點(diǎn)的坐標(biāo)分別為,則,
,可得,               2分
所以,,           4分
,所以橢圓的方程為.              6分
(Ⅱ)設(shè)的坐標(biāo)分別為,則,. 由,
可得,即,                      8分
又圓的圓心為半徑為,故圓的方程為
,也就是,令,
可得,故圓必過(guò)定點(diǎn).                  13分
考點(diǎn):本題考查圓與橢圓的方程等相關(guān)知識(shí),考查運(yùn)算求解能力以及分析問(wèn)題、解決問(wèn)題的能力,較難題.
點(diǎn)評(píng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-,求頂點(diǎn)A的軌跡方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C: 過(guò)點(diǎn), 且離心率

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)右焦點(diǎn)的動(dòng)直線(xiàn)交橢圓于點(diǎn),設(shè)橢圓的左頂點(diǎn)為連接且交動(dòng)直線(xiàn),若以MN為直徑的圓恒過(guò)右焦點(diǎn)F,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線(xiàn)AP、PB與直線(xiàn)ly=-2分別交于點(diǎn)M、N.

(1)設(shè)直線(xiàn)AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線(xiàn)段MN長(zhǎng)的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)上任意一點(diǎn)到兩個(gè)定點(diǎn),的距離之和為4.
(1)求曲線(xiàn)的方程;
(2)設(shè)過(guò)(0,-2)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),且為原點(diǎn)),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)且斜率為的直線(xiàn)被橢圓截的弦長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線(xiàn)的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線(xiàn),是否存在實(shí)數(shù)m,使直線(xiàn)與(Ⅰ)中的橢圓有兩個(gè)不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓 經(jīng)過(guò)點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓相交于A、B兩點(diǎn),以線(xiàn)段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,的兩個(gè)頂點(diǎn)、的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)的重心,軸上一點(diǎn)滿(mǎn)足,且.
(1)求的頂點(diǎn)的軌跡的方程;
(2)不過(guò)點(diǎn)的直線(xiàn)與軌跡交于不同的兩點(diǎn),當(dāng)時(shí),求的關(guān)系,并證明直線(xiàn)過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案