(12分)如圖所示,在四棱錐S-ABCD中,側(cè)棱SA=SB=SC=SD,低面ABCD是正方形,AC與交于點(diǎn)O,

   (1)求證:AC⊥平面SBD;

   (2)當(dāng)點(diǎn)P在線段MN上移動(dòng)時(shí),試判斷EP與AC的位置關(guān)系,并證明你的結(jié)論。

解析:(1)低面ABCD是正方形,O為中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

     (2)連接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,當(dāng)P點(diǎn)在線段MN上移動(dòng)時(shí),總有AC⊥EP-----(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐S-ABCD中,SD⊥底面ABCD,四邊形ABCD為矩形,E,F(xiàn)分別為AB、SC的中點(diǎn),且AD=SD=2,DC=3.
(1)求證:EF∥平面SAD;
(2)求異面直線AD、EF所成角的余弦值;
(3)四棱錐S-ABCD有外接球嗎?若有,求出外接球的表面積;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐S-ABCD中,BA⊥面SAD,CD⊥面SAD,SA⊥SD,且SA=SD=DC=2AB.O為AD中點(diǎn).
(1)求證:SO⊥BC;
(2)求直線SO與面SBC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在四棱錐S-ABCD中,BA⊥面SAD,CD⊥面SAD,SA⊥SD,且SA=SD=DC=2AB.O為AD中點(diǎn).
(1)求證:SO⊥BC;
(2)求直線SO與面SBC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐S―ABCD中,SA⊥底面ABCD,∠BAD=∠ABC= 90°,SA=AB=AD=BC=1,E為SD中點(diǎn).

(1)若F為底面BC邊上一點(diǎn),且BF=BC,求證:EF//平面SAB;

(2)底面BC邊上是否存在一點(diǎn)G,使得二面角S―DG―B的正切值為,若存在,求出G點(diǎn)位置;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案