設(shè)U=R,集合A={y|y=
x-1
,x≥1}
,B={x∈Z|x2-4≤0},則下列結(jié)論正確的是( 。
A、A∩B={-2,-1}
B、(?UA)∪B=(-∞,0)
C、A∪B=[0,+∞)
D、(?UA)∩B={-2,-1}
分析:利用直接法,先化簡(jiǎn)集合A,B,后求它們的交集、并集或補(bǔ)集.對(duì)照選項(xiàng)求解即可.
解答:解:∵集合A={y|y=
x-1
,x≥1}
=[0,+∞),
B={x∈Z|x2-4≤0}={-2,-1,0,1,2},
∴(?UA)∩B={-2,-1}.
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的值域,一元二次不等式的解法,以及交集、并集、補(bǔ)集等的運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(CUA)∩B=φ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若B⊆A,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U=R,集合A={x|x<-3或x>3},B=(-∞,1)∪(4,+∞),則(CA)∪B=
(-∞,3]∪(4,+∞)
(-∞,3]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷化一模)設(shè)U=R,集合A={x|-x2+x>0},則CA=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案