【題目】在某次水下考古活動(dòng)中,需要潛水員潛入水深為30米的水底進(jìn)行作業(yè).其用氧量包含3個(gè)方面:①下潛時(shí),平均速度為(米/單位時(shí)間),單位時(shí)間內(nèi)用氧量為為正常數(shù));②在水底作業(yè)需5個(gè)單位時(shí)間,每個(gè)單位時(shí)間用氧量為0.4;③返回水面時(shí),平均速度為(米/單位時(shí)間), 單位時(shí)間用氧量為0.2.記該潛水員在此次考古活動(dòng)中,總用氧量為.

1)將表示為的函數(shù);

2)設(shè)0<≤5,試確定下潛速度,使總的用氧量最少.

【答案】1;

2)當(dāng)時(shí),下潛速度為時(shí),用氧量最小值為;

當(dāng)時(shí),,下潛速度為5時(shí),用氧量最小值為

【解析】

試題分析:本題考查函數(shù)建模與求函數(shù)最值相關(guān)問(wèn)題.(1)根據(jù)實(shí)際意義,列出在各個(gè)階段的用氧量相加即可求出函數(shù)解析式;(2)由函數(shù)解析式,得用基本不等式和導(dǎo)數(shù)研究函數(shù)的最值.

試題解析:(1)潛入水底用時(shí),用氧量為

水底作業(yè)用氧量為

返回水面用時(shí),用氧量為

所以

2

當(dāng)且僅當(dāng),即時(shí)取等號(hào),

當(dāng)時(shí),時(shí),的最小值為

當(dāng)時(shí),即時(shí),,

因此函數(shù)上是減函數(shù),

所以當(dāng)時(shí),的最小值為

綜上,當(dāng)時(shí),下潛速度為時(shí),用氧量最小值為

當(dāng)時(shí),,下潛速度為5時(shí),用氧量最小值為

考點(diǎn):實(shí)際應(yīng)用,函數(shù)建模,求函數(shù)最值,基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊1 次擊中目標(biāo)的概率分別三分之二和四分之三,假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒(méi)有影響,每次射擊是否擊中目標(biāo)相互之間也沒(méi)有影響.

1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率.

2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問(wèn):乙恰好射擊5次后被終止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,,分別為棱和棱的中點(diǎn),則下列說(shuō)法正確的是( )

A.∥平面B.平面截正方體所得截面為等腰梯形

C.平面D.異面直線所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列是合情推理的是(

①由正三角形的性質(zhì)類(lèi)比出正三棱錐的有關(guān)性質(zhì);

②由正方形矩形的內(nèi)角和是,歸納出所有四邊形的內(nèi)角和都是;

③三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得出凸邊形內(nèi)角和是;

④小李某次數(shù)學(xué)考試成績(jī)是90分,由此推出小李的全班同學(xué)這次數(shù)學(xué)考試的成績(jī)都是90分.

A.①②B.①②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長(zhǎng)為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.

(1)若M是DE的中點(diǎn),試在AC上找一點(diǎn)N,使得MN∥平面ABE,并給出證明;

(2)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的方程為3x+4y-12=0,求直線l′的方程,使得

(1)l′與l平行且過(guò)點(diǎn)(-1,3);

(2)l′與l垂直且l′與兩坐標(biāo)軸圍成的三角形的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù))

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),上為減函數(shù),求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,底面ABC,M BC的中點(diǎn),若底面ABC是邊長(zhǎng)為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線PMAC所成角的大小. (結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若,證明:

2)若,有且只有個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

3)若,,求正整數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案