若實(shí)數(shù)滿足:,則的最大值是(  )
A.3B.C.5D.
C

試題分析:根據(jù)題意,由于實(shí)數(shù)滿足:表示的為圓心在原點(diǎn),半徑為的圓與直線圍成的區(qū)域,可知當(dāng)過點(diǎn)(1,2)時(shí),目標(biāo)函數(shù)最大為 5,故選C
點(diǎn)評:解決該試題的關(guān)鍵是利用不等式表示區(qū)域,然后借助于目標(biāo)函數(shù)平移得到結(jié)論,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù)滿足,則的最大值為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為不等式組表示的平面區(qū)域,當(dāng)連續(xù)變化到時(shí),動(dòng)直線
掃過中的那部分區(qū)域的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
制訂投資計(jì)劃時(shí),不僅要考慮可能要獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元,問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)某家電生產(chǎn)企業(yè)根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)器、彩電、冰箱共120臺(tái),且冰箱至少生產(chǎn)20臺(tái).已知生產(chǎn)這些家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:
家電名稱
空調(diào)器
彩電
冰箱
工時(shí)



產(chǎn)值/千元
4
3
2
問每周生產(chǎn)空調(diào)器、彩電、冰箱各多少臺(tái),才能使產(chǎn)值最高?最高產(chǎn)值是多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)不等式組   表示的平面區(qū)域?yàn)镈,若指數(shù)函數(shù)y=的圖像上存在區(qū)域D上的點(diǎn),則a 的取值范圍是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若變量滿足約束條件,則目標(biāo)函數(shù)的最大值為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量滿足約束條件,則的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量滿足約束條件則目標(biāo)函數(shù)的最大值為( )
A.4B.11C.12D.14

查看答案和解析>>

同步練習(xí)冊答案