【題目】(2015·新課標1卷)已知橢圓E的中心為坐標原點,離心率為E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準線與E的兩個交點,則|AB|= ( )
A.3
B.6
C.9
D.12

【答案】B
【解析】
∵拋物線C:y2=8x的焦點為(2,0),準線方程為x=-2,∴橢圓E的右焦點為(2,0),∴橢圓E的焦點在x軸上,射方程為+=1(a>b>0), c=2,∵e==,∴a=4, ∴b2=a2-c2=12, ∴橢圓E方程為+=1,
將x=-2代入橢圓E的方程解得A(-2,3),B(-2,-3),
|AB|= 6,故選B。
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】網上購物逐步走進大學生活,某大學學生宿舍4人積極參加網購,大家約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(Ⅰ)求這4人中恰有1人去淘寶網購物的概率;
(Ⅱ)用ξ、η分別表示這4人中去淘寶網和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學課程之間的關系,在我市某普通中學高中生中隨機抽取200名學生,得到如下2×2列聯(lián)表:

喜歡數(shù)學課

不喜歡數(shù)學課

合計

30

60

90

20

90

110

合計

50

150

200

經計算K2≈6.06,根據獨立性檢驗的基本思想,約有(填百分數(shù))的把握認為“性別與喜歡數(shù)學課之間有關系”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加. 現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”求事件發(fā)生的概率
(2)設為選出的4人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為
①點P在圓C內部;
②過點P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點P出發(fā),經x軸反射到圓C上的最短路程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為

查看答案和解析>>

同步練習冊答案