已知:函數(shù)的最小正周期是π,且當時f(x)取得最大值3.
(1)求f(x)的解析式及單調(diào)增區(qū)間.
(2)若x∈[0,2π),且,求x
(3)將函數(shù)f(x)的圖象向右平移m(m>0)個單位長度后得到函數(shù)y=g(x)的圖象,且y=g(x)是偶函數(shù),求m的最小值.
【答案】分析:(1)利用函數(shù)的周期,最值,求出A,T然后求出ω,通過當時f(x)取得最大值3求出α,從而求f(x)的解析式及單調(diào)增區(qū)間.
(2)若x∈[0,2π),且,求出x即可.
(3)利用函數(shù)f(x)的圖象向右平移m(m>0)個單位長度后得到函數(shù)y=g(x)的圖象,且y=g(x)是偶函數(shù),求出g(x),然后再求m的最小值.
解答:解:(1)由已知條件知道:(1分)
∴ω=2(2分)∴
(3分)
(4分)
可得
∴f(x)的單調(diào)增區(qū)間是(6分)
(2),

∴x=kπ或(9分)
又x∈[0,2π)∴(11分)
(3)由條件可得:(13分)
又g(x)是偶函數(shù),所以g(x)的圖象關于y軸對稱,
∴x=0時,g(x)取最大或最小值(14分)
,
(15分)
又m>0∴m的最小值是(16分)
點評:本題考查三角函數(shù)的最值,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換,化為一個角的一個三角函數(shù)的形式是求最值的常用方法.能夠正確取得函數(shù)在給定區(qū)間上的最值,是順利解題的前提.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年四川省綿陽市高三第二次月考文科數(shù)學試卷 題型:解答題

已知向量,函數(shù)—且最小正周斯為,

(1) 求函數(shù),的最犬值,并寫出相應的x的取值集合;

(2)在中角A,B,C所對的邊分別為a,b,c且,求b的值.

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�