標(biāo)準(zhǔn)方程下的橢圓的短軸長為,焦點(diǎn),右準(zhǔn)線軸相交于點(diǎn),且,過點(diǎn)的直線和橢圓相交于點(diǎn).

(1)求橢圓的方程和離心率;

(2)若,求直線的方程.

 

【答案】

(1), ;(2)

【解析】本試題主要是考查了直線與圓的位置關(guān)系綜合運(yùn)用。

(1)由題意,設(shè)該橢圓方程為,根據(jù)條件有

得到橢圓的方程。

(2)設(shè)直線的方程為,聯(lián)立橢圓方程有

和向量的數(shù)量積為零得到結(jié)論。

解:(1)由題意,設(shè)該橢圓方程為,根據(jù)條件有

,所以橢圓的方程為,離心率

(2)設(shè)直線的方程為,聯(lián)立橢圓方程有

   

,即,

于是有,

由(1)(2)(3)得,,經(jīng)檢驗(yàn)符合

所以直線

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動點(diǎn)的存在情況和個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

)下的不動點(diǎn)的存在情況和個(gè)數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省模擬題 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,焦距為2,并且橢圓C上的點(diǎn)與焦點(diǎn)最短的距離是1。
(1)求橢圓C的離心率及標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,則k與m之間應(yīng)該滿足怎樣的關(guān)系?
(3)在(2)的條件下,且以MN為直徑的圓經(jīng)過橢圓的右頂點(diǎn)A,求證:直線l必過定點(diǎn),并求出定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市通州區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C的焦點(diǎn)在y軸上,離心率為,且短軸的一個(gè)端點(diǎn)到下焦點(diǎn)F的距離是
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)設(shè)直線y=-2與y軸交于點(diǎn)P,過點(diǎn)F的直線l交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案