已知分別是橢圓的左、右 焦點,已知點

 

 滿足,且。設(shè)是上半橢圓上且滿足的兩點。

(1)求此橢圓的方程;

(2)若,求直線AB的斜率。

 

【答案】

解:(1)由于,

,解得,

∴橢圓的方程是……………………………………………5分

 (2)∵,∴三點共線,

,設(shè)直線的方程為,

消去得:

,解得……………………………….7分

設(shè),由韋達(dá)定理得①,

又由得:,∴

將②式代入①式得:,

消去得:

解得………………………………………………………..12分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省冀州中學(xué)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)(B卷) 題型:解答題

(12分)已知分別是橢圓的左、右 焦點,已知點 滿足,且。設(shè)是上半橢圓上且滿足的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會高三2月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.

()求橢圓的方程;

()設(shè)直線與橢圓相交于兩點,(為坐標(biāo)原點),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省馬鞍山高三三模理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線交于點,直線交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省高二第二學(xué)期期中考試數(shù)學(xué)(理科)試題 題型:填空題

已知分別是橢圓的左、右焦點,上頂點為M。若在橢圓上存在一點P,分別連結(jié)PF1,PF2交y軸于A,B兩點,且滿足,則實數(shù)的取值范圍為              。

 

查看答案和解析>>

同步練習(xí)冊答案