設(shè)實(shí)數(shù)x,y滿足x2+(y-2)2=1,若對(duì)滿足條件x,y,不等式x2+y2+c≤0恒成立,則c的取值范圍是
c≤-9
c≤-9
分析:要使不等式x2+y2+c≤0恒成立,即c≤-(x2+y2)恒成立,則c小于等于-(x2+y2)的最小值.問(wèn)題轉(zhuǎn)換為求-(x2+y2)的最小值,即可得答案.
解答:解:若對(duì)滿足條件x,y,不等式x2+y2+c≤0恒成立,即c≤-(x2+y2)恒成立,
只要c小于等于-(x2+y2)的最小值即可.
把x2+y2看作x2+(y-2)2=1上的點(diǎn)P(x,y)到坐標(biāo)原點(diǎn)距離O的平方,而PO的最大值是3,
∴-(x2+y2)的最小值是-9.
∴c≤-9
故答案為:c≤-9
點(diǎn)評(píng):本題考查①含參數(shù)的不等式恒成立問(wèn)題,常常將參數(shù)分離求解,轉(zhuǎn)化成求最值問(wèn)題.②點(diǎn)與圓的位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、設(shè)實(shí)數(shù)x,y滿足x2+2xy-1=0,則x+y的取值范圍是
(-∞,-1]∪[1,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2-y2+x+3y-2≥0,當(dāng)x∈[-2,2]時(shí),x+y的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2+(y-1)2=1,若不等式x+y+C≥0對(duì)任意的x,y都成立,則實(shí)數(shù)C的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y 滿足x2+y2+xy=1,求x+y的最大值.
題設(shè)條件“x2+y2+xy=1”有以下兩種等價(jià)變形:
(x+
y
2
)2+(
3
2
y)2=1
;
②x2+y2-2xycos120°=1.
請(qǐng)按上述變形提示,用兩種不同的方法分別解答原題.

查看答案和解析>>

同步練習(xí)冊(cè)答案