解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

定義F(x,y)=(1+x)y,x,y∈(0,+∞),

(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線(xiàn)C1,曲線(xiàn)C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O向曲線(xiàn)C1作切線(xiàn),切點(diǎn)為B(n,t)(n>0),設(shè)曲線(xiàn)C1在點(diǎn)A、B之間的曲線(xiàn)段與線(xiàn)段OA、OB所圍成圖形的面積為S,求S的值;

(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線(xiàn)C2,若存在實(shí)數(shù)b使得曲線(xiàn)C2在x0(-4<x0<-1)處有斜率為-8的切線(xiàn),求實(shí)數(shù)a的取值范圍;

(Ⅲ)當(dāng)且x<y時(shí),證明F(x,y)>F(y,x).

答案:
解析:

  解:(Ⅰ)∵

  ∴,故A(0,9), 1分

  又過(guò)坐標(biāo)原點(diǎn)O向曲線(xiàn)作切線(xiàn),切點(diǎn)為B(nt)(n>0),=2x-4.

  ∴,

  解得B(3,6),  2分

  ∴.  4分

  (Ⅱ)

  設(shè)曲線(xiàn)處有斜率為-8的切線(xiàn),

  又由題設(shè)log2(x3+ax2+bx+1)>0,=3x2+2ax+b,

  ∴存在實(shí)數(shù)b使得有解,  6分

  由(1)得,代入(3)得,  7分

  ∴由有解,

  得2×(-4)2+a×(-4)+8>0或2×(-1)2+a×(-1)+8>0,

  ∴a<10或

  ∴.  9分

  (Ⅲ)令,由,  10分

  又令,

  ∴,

  ∵連續(xù)  ∴單調(diào)遞減,  12分

  ∴當(dāng)時(shí)有,,

  ∴當(dāng)時(shí)有,,

  ∴單調(diào)遞減,  13分

  ∴時(shí),有,

  ∴yln(1+x)>xln(1+y),

  ∴,

  ∴當(dāng)時(shí),.  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山西省實(shí)驗(yàn)中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級(jí)第三次月考 數(shù)學(xué)試題 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項(xiàng)an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個(gè)遞增等差數(shù)列{an}的前3項(xiàng)

(1)求此數(shù)列的通項(xiàng)公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省信陽(yáng)市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測(cè)試、不等式二 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

證明下列不等式:

(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xyyzzx)

(理)若x,y,z∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省信陽(yáng)市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測(cè)試、不等式二 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實(shí)根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內(nèi)有兩個(gè)實(shí)根.

(文)設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測(cè)卷(四)附答案 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測(cè)卷(四)附答案 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBCAB=2,AD,BC.橢圓CA、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D

(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;

(2)(文)是否存在直線(xiàn)l與橢圓C交于MN兩點(diǎn),且線(xiàn)段MN的中點(diǎn)為C,若存在,求l與直線(xiàn)AB的夾角,若不存在,說(shuō)明理由.

(理)若點(diǎn)E滿(mǎn)足,問(wèn)是否存在不平行AB的直線(xiàn)l與橢圓C交于MN兩點(diǎn)且|ME|=|NE|,若存在,求出直線(xiàn)lAB夾角的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案