(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)

設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于P、Q兩點(diǎn).

(1) 求該橢圓的標(biāo)準(zhǔn)方程;

(2) 若,求直線l的方程;

(3) 設(shè)直線l與圓Ox2+y2=8相交于M、N兩點(diǎn),令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

 

【答案】

(1);(2)x+2y+2=0和x–2y+2=0;(3)。

【解析】

試題分析:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,右焦點(diǎn)為.

因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90º,得c=2b…………1分

在Rt△AB1B2中,,從而.………………3分

因此所求橢圓的標(biāo)準(zhǔn)方程為: …………………………………………4分

(2)由(1)知,由題意知直線的傾斜角不為0,故可設(shè)直線的方程為:,代入橢圓方程得,…………………………6分

設(shè)P(x1, y1)、Q(x2, y2),則y1、y2是上面方程的兩根,因此,

,又,所以

………………………………8分

,得=0,即,解得;  

所以滿足條件的直線有兩條,其方程分別為:x+2y+2=0和x–2y+2=0……………………10分 

(3) 當(dāng)斜率不存在時,直線,此時,………………11分

當(dāng)斜率存在時,設(shè)直線,則圓心到直線的距離,

因此t=,得………………………………………13分

聯(lián)立方程組:,由韋達(dá)定理知,

,所以

因此.

設(shè),所以,所以…15分

綜上所述:△B2PQ的面積……………………………………………16分

考點(diǎn):橢圓的簡單性質(zhì);圓的簡單性質(zhì);直線與橢圓的綜合應(yīng)用。

點(diǎn)評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學(xué)思想方法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿足.

求點(diǎn)的軌跡方程;

過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題

. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)

已知公差大于零的等差數(shù)列的前項(xiàng)和為,且滿足,

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);

(3)若(2)中的的前項(xiàng)和為,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。

(1)求證:的關(guān)系為

(2)設(shè),定義在上的偶函數(shù),當(dāng),且函數(shù)圖象關(guān)于直線對稱,求證:,并求時的解析式;

(3)在(2)的條件下,不等式上恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

設(shè)為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).

(1)       若對任意,點(diǎn)在拋物線上,試問當(dāng)為何值時,點(diǎn)在某一圓上,并求出該圓方程;

(2)       若點(diǎn)在橢圓上,試問:點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;

(3)       對(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問:是否存在一個定圓,使直線恒與圓相切.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿足.

(1) 求點(diǎn)的軌跡方程;

(2)    過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案