)已知函數(shù)滿足對(duì)一切都有,且,當(dāng)時(shí)有.
(1)求的值;       
(2)判斷并證明函數(shù)上的單調(diào)性;
(3)解不等式:
⑴令,得 ,
再令,得 ,
,從而 .        ---------------------------------2分
⑵任取
      -------------------4分
.    -------------6分
,即.
上是減函數(shù).        -------------------------------------------8分
⑶由條件知,,    
設(shè),則,即,
整理,得  ,        -------------------9分
,不等式即為,
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202501018447.png" style="vertical-align:middle;" />在上是減函數(shù),,即,    ---------11分
,從而所求不等式的解集為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一物體以v(t)=t2 -3t+8(m/s)的速度運(yùn)動(dòng),則其在前30秒內(nèi)的平均速度為______________(m/s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分) 已知
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若處有極值,求的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實(shí)數(shù),使在區(qū)間的最小值是3,若存在,求出的值;
若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y= 在點(diǎn)(1,-1)處的切線方程為(    )
A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,且是偶函數(shù),則曲線在原點(diǎn)處的切線方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù),下列結(jié)論中正確的是(    )
A.是函數(shù)的極小值點(diǎn),是極大值點(diǎn)
B.均是的極大值點(diǎn)
C.是函數(shù)的極小值點(diǎn),函數(shù)無(wú)極大值
D.函數(shù)無(wú)極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)設(shè)為實(shí)數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的導(dǎo)函數(shù)為,且,則函數(shù)的解析式等于    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線處的切線的斜率等于(    )
A.3B.-3
C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案