【題目】已知函數(shù)f(x)的定義域?yàn)镈,若對于a,b,c∈D,f(a),f(b),f(c)分別為某個(gè)三角形的三邊長,則稱f(x)為“三角形函數(shù)”.給出下列四個(gè)函數(shù): ①f(x)=lg(x+1)(x>0);
②f(x)=4﹣cosx;


其中為“三角形函數(shù)”的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:若f(x)為“三角形函數(shù), 則f(x)max﹣f(x)min<f(x)min
①若f(x)=lg(x+1)(x>0),則f(x)∈(0,+∞),不滿足條件;
②若f(x)=4﹣cosx,則f(x)∈[3,5],滿足條件;
③若 ,則f(x)∈[1,4],不滿足條件;
④若 =1+ ,則f(x)∈(1,2),滿足條件;
故選:B
【考點(diǎn)精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個(gè)周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD= ,則sin∠BAC=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=xex
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2011年,國際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源是中國古代數(shù)學(xué)家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動(dòng)中,設(shè)計(jì)了一個(gè)有獎(jiǎng)闖關(guān)游戲,游戲分為兩個(gè)環(huán)節(jié). 第一環(huán)節(jié)“解鎖”:給定6個(gè)密碼,只有一個(gè)正確,參賽選手從6個(gè)密碼中任選一個(gè)輸入,每人最多可輸三次,若密碼正確,則解鎖成功,該選手進(jìn)入第二個(gè)環(huán)節(jié),否則直接淘汰.
第二環(huán)節(jié)“闖關(guān)”:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得10個(gè)、20個(gè)、30個(gè)學(xué)豆的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲,也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過第一關(guān)、第二關(guān)、第三關(guān)的概率分別為 ,選手選擇繼續(xù)闖關(guān)的概率均為 ,且各關(guān)之間闖關(guān)成功與否互不影響.
(1)求某參賽選手能進(jìn)入第二環(huán)節(jié)的概率;
(2)設(shè)選手甲在第二環(huán)節(jié)中所得學(xué)豆總數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y= x2(p>0)的焦點(diǎn)與雙曲線C2 ﹣y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M,若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a≤2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , ,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù) 在x 1處的切線方程;
(2)若存在 ,使得 成立,其中 為常數(shù),
求證: ;
(3)若對任意的 ,不等式 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案