在直徑為AB的半圓形區(qū)域內(nèi),劃出一個(gè)三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其他兩邊分別為6米和8米.先要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中,DEAB上,下圖的設(shè)計(jì)方案是使AC =8米,BC =6米.

圖2-5-20

(1)求△ABC的邊AB上的高h.

(2)設(shè)DN =x,當(dāng)x取何值時(shí),水池DEFN的面積最大?

(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85米的M處有一棵大樹,問:這棵大樹是否位于最大矩形水池的邊上?如果為保護(hù)大樹,請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中欲建的最大矩形水池能避開大樹.

思路分析:(1)利用三角形的面積,即斜邊×斜邊上的高=兩直角邊的積;(2)求最值問題時(shí),利用三角形相似得到比例式,轉(zhuǎn)變成二次函數(shù)即可.

解:(1)∵直徑AB為△ABC的斜邊,?

AB = =10米.?

h = =4.8米.?

(2)∵=,∴.?

又∵=,?

∴S矩形DEFN?=  (8- x)=- x2+10x =- .?

∴當(dāng)時(shí),S max=12.?

(3)∵BC2=OB·AB,∴OB =3.6米.?

=,∴BE =1.8米.?

同理,AD =3.2米,?

AC =6米,BC =8米即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,點(diǎn)C在半圓弧上,半圓內(nèi)△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS內(nèi)部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設(shè)△ABC的面積為S1,正方形PQRS的邊長(zhǎng)為x,面積為S2,將比值
S1
S2
稱為“規(guī)劃合理度”.
(1)求證:x=
2asin2θ
2+sin2θ

(2)當(dāng)a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時(shí)角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,點(diǎn)C在半圓弧上,半圓內(nèi)△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS內(nèi)部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設(shè)△ABC的面積為S1,正方形PQRS的邊長(zhǎng)為x,面積為S2,將比值數(shù)學(xué)公式稱為“規(guī)劃合理度”.
(1)求證:數(shù)學(xué)公式
(2)當(dāng)a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時(shí)角θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直徑為AB的半圓形區(qū)域內(nèi),劃出一個(gè)三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其他兩邊分別為6米和8米.先要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中,DE在AB上,圖2-5-20的設(shè)計(jì)方案是使AC=8米,BC=6米.

圖2-5-20

(1)求△ABC的邊AB上的高h(yuǎn).

(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?

(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85米的M處有一棵大樹,問:這棵大樹是否位于最大矩形水池的邊上?如果為保護(hù)大樹,請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中欲建的最大矩形水池能避開大樹.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)段考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,點(diǎn)C在半圓弧上,半圓內(nèi)△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS內(nèi)部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設(shè)△ABC的面積為S1,正方形PQRS的邊長(zhǎng)為x,面積為S2,將比值稱為“規(guī)劃合理度”.
(1)求證:
(2)當(dāng)a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時(shí)角θ的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案