動圓C的方程為

(1)若,且直線與圓C交于A,B兩點,求弦長

(2)求動圓圓心C的軌跡方程;

(3)若直線與動圓圓心C的軌跡有公共點,求的取值范圍。

 

 

【答案】

解:(1)動圓的方程可變形為,當(dāng)時,

    圓的方程是,由

    ;

    (2)圓心坐標滿足,且

    所以圓心的軌跡方程是;

    (3)直線恒過(2,0)點,數(shù)形結(jié)合,得

   

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動圓C的方程為x2+y2+2ax-4ay+5=0.
(1)若a=2,且直線y=3x與圓C交于A,B兩點,求弦長|AB|;
(2)求動圓圓心C的軌跡方程;
(3)若直線y=kx-2k與動圓圓心C的軌跡有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市四中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:044

動圓C的方程為x2+y2+2ax-4ay+5=0.

(1)若a=2,且直線y=3x與圓C交于A,B兩點,求弦長|AB|;

(2)求動圓圓心C的軌跡方程;

(3)若直線y=kx-2k與動圓圓心C的軌跡有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動圓C的方程為x2+y2+2ax-4ay+5=0.
(1)若a=2,且直線y=3x與圓C交于A,B兩點,求弦長|AB|;
(2)求動圓圓心C的軌跡方程;
(3)若直線y=kx-2k與動圓圓心C的軌跡有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京四中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

動圓C的方程為x2+y2+2ax-4ay+5=0.
(1)若a=2,且直線y=3x與圓C交于A,B兩點,求弦長|AB|;
(2)求動圓圓心C的軌跡方程;
(3)若直線y=kx-2k與動圓圓心C的軌跡有公共點,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案