【題目】下列說法正確的是( )
A.a∈R,“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤ ”,則¬p是真命題
【答案】A
【解析】解:A.由 <1得a>1或a<0,則“ <1”是“a>1”的必要不充分條件,正確,
B.若p∧q為真命題,則p,q都是真命題,此時p∨q為真命題,即充分性成立,反之當(dāng)p假q真時,p∨q為真命題,
但p∧q為假命題,故“p∧q為真命題”是“p∨q為真命題”的充分不必要條件,故B錯誤,
C.命題“x∈R使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3≥0”,故C錯誤,
D.∵sinx+cosx= sin(x+ )≤ 恒成立,∴p是真命題,則¬p是假命題,故D錯誤,
故選:A.
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O(shè)為圓心,AB為直徑),現(xiàn)對其進(jìn)行改建,在AB的延長線上取點(diǎn)D,OD=80m,在半圓上選定一點(diǎn)C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2 . 設(shè)∠AOC=xrad.
(1)寫出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓: ()的離心率為,左焦點(diǎn)為,右焦點(diǎn)為,短軸兩個端點(diǎn)、,與軸不垂直的直線與橢圓交于不同的兩點(diǎn)、,記直線、的斜率分別為、,且.
(1)求橢圓的方程;
(2)求證直線與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)當(dāng)弦的中點(diǎn)落在內(nèi)(包括邊界)時,求直線的斜率的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)
已知圓,過點(diǎn)作直線交圓于、兩點(diǎn).
(Ⅰ)當(dāng)經(jīng)過圓心時,求直線的方程.
(Ⅱ)當(dāng)直線的傾斜角為時,求弦的長.
(Ⅲ)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個單位長度,再向下平移1個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì) . (填入所有正確性質(zhì)的序號)
①最大值為 ,圖象關(guān)于直線x= 對稱;
②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);
③最小正周期為π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com