【題目】已知橢圓E的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,離心率為 . (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實(shí)數(shù)m的值.

【答案】解:(Ⅰ)∵橢圓E的長(zhǎng)軸長(zhǎng)為4,∴a=2,離心率為 . ∴ ,c= ,∴b=1
∵橢圓E的焦點(diǎn)在x軸上,
∴橢圓E的標(biāo)準(zhǔn)方程為
(Ⅱ)由條件可得直線AB的方程為y=﹣x+1.于是,有 ,
設(shè)弦AB的中點(diǎn)為M,則由中點(diǎn)坐標(biāo)公式得 ,由此及點(diǎn)M在直線l得
【解析】(Ⅰ)根據(jù)已知可求出橢圓中的a,b的值,再根據(jù)橢圓的焦點(diǎn)在x軸上,就可得到橢圓方程.(Ⅱ)根據(jù)直線AB與直線l:y=x+m垂直,可得直線AB的斜率,結(jié)合A點(diǎn)坐標(biāo)就可求出直線AB的方程,代入橢圓方程,化簡(jiǎn),利用韋達(dá)定理求出AB的中點(diǎn)坐標(biāo),代入直線l的方程,就可求出m的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不共線的向量滿足, , .

1)若垂直,求的值;

2)當(dāng)時(shí),若存在兩個(gè)不同的使得成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosα﹣ ,﹣1), =(sinα,1), 為共線向量,且α∈[﹣ ,0].
(1)求sinα+cosα的值;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用an的信息如圖.

(1)求an
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對(duì)任意,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以邊長(zhǎng)為的正三角形的頂點(diǎn)為坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線,過拋物線的焦點(diǎn)的直線過交拋物線兩點(diǎn).

1)求拋物線的方程;

2求證 為定值

3)求線段的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+aex , 若f′(x)≥2 恒成立,則a的取值范圍為(
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|x<1或x>3},則不等式cx2﹣bx+a<0的解集為

查看答案和解析>>

同步練習(xí)冊(cè)答案