某公司一年購買某種貨物600噸,每次都購買x噸,運費為3萬元/次,一年的總存儲費用為2x萬元,若要使一年的總運費與總存儲費用之和最小,則每次需購買( 。﹪崳
分析:由某公司每次都購買x噸,由于一年購買某種貨物600噸,得出需要購買的次數(shù),從而求得一年的總運費與總存儲費用之和,最后利用基本不等式求得一年的總運費與總存儲費用之和最小即可.
解答:解:某公司一年購買某種貨物600噸,每次都購買x噸,則需要購買
600
x
次,
運費為3萬元/次,一年的總存儲費用為2x萬元,一年的總運費與總存儲費用之和為
600
x
•3+2x萬元.
600
x
•3+2x≥2
1800
x
×2x
=120
,當(dāng)且僅當(dāng)
1800
x
=2x,即x=30噸時,等號成立.
所以每次購買30噸時,一年的總運費與總存儲費用之和最小.
故選C
點評:本小題主要考查函數(shù)模型的選擇與應(yīng)用、基本不等式求最值,屬于中檔題.解決實際問題的關(guān)鍵是選擇好分式函數(shù)模型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂三模)某公司一年購買某種貨物400t,每次都購買x t,運費為4萬元/次,一年的總存儲費用為4x萬元.要使一年的總運費與儲存費用之和最小,則x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司一年購買某種貨物200噸,分成若干次均勻購買,每次購買的運費為2萬元,一年存儲費用恰好與每次的購買噸數(shù)的數(shù)值相等(單位:萬元),要使一年的總運費與總存儲費用之和最小,則應(yīng)購買
10
10
次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司一年購買某種貨物900噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,則一年的總運費與總存儲費用之和的最小值為
240
240
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元.
(1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?
(2)要使一年的總運費與總存儲費用之和不超過200萬元,則每次購買量在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)某公司一年購買某種貨物600噸,每次都購買x噸(x為600的約數(shù)),運費為3萬元/次,一年的總存儲費用為2x萬元.若要使一年的總運費與總存儲費用之和最小,則每次需購買
30
30
噸.

查看答案和解析>>

同步練習(xí)冊答案