精英家教網 > 高中數學 > 題目詳情

 
(本小題滿分13分)

       如圖,已知正方形ABCD和梯形ACEF所在的平面互相垂直,

,CE//AF,

   (I)求證:CM//平面BDF;

   (II)求異面直線CM與FD所成角的大;

   (III)求二面角A—DF—B的大小。

(Ⅰ)見解析  (Ⅱ)   (Ⅲ)


解析:

(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則  2分

       由  1分

         

       又平面BDF,平面BDF。    2分

   (Ⅱ)解:設異面直線CM與FD所成角的大小為

      

       。

       即異面直線CM與FD所成角的大小為   4分

   (III)解:平面ADF,平面ADF的法向量為      1分

       設平面BDF的法向量為

          1分

          1分由圖可知二面角A—DF—B的大小為   2分

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案