如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB.
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點O在攝影愛好者與立柱所在的平面內旋轉.在彩桿轉動的任意時刻,攝影愛好者觀察彩桿MN的視角∠MSN(設為θ)是否存在最大值?若存在,請求出∠MSN取最大值時cosθ的值;若不存在,請說明理由.
(1) AB為3米 OB為2米 (2) 當視角∠MSN取最大值時,cosθ=.
【解析】(1)如圖,作SC⊥OB于C,
依題意∠CSB=30°,∠ASB=60°.
又SA=,故在Rt△SAB中,可求得AB==3,
即攝影愛好者到立柱的水平距離AB為3米.
在Rt△SCO中,SC=3,∠CSO=30°,OC=SC·tan 30°=,
又BC=SA=,故OB=2,即立柱的高度OB為2米.
(2)方法一:如圖,以O為原點,以水平方向向右為x軸正方向建立平面直角坐標系,連接SM,SN,
設M(cosα,sinα),α∈[0,2π),
則N(-cosα,-sinα),由(1)知S(3,-).
故=(cosα-3,sinα+),
=(-cosα-3,-sinα+),
∵·=(cosα-3)·(-cosα-3)+(sinα+)·(-sinα+)=11.
||·||=·
=·
=
=.
由α∈[0,2π)知||·||∈[11,13].
所以cos∠MSN=∈[,1],易知∠MSN為銳角,
故當視角∠MSN取最大值時,cosθ=.
方法二:∵cos∠MOS=-cos∠NOS,
∴=-
于是得SM2+SN2=26從而
cosθ=≥=.
又∠MSN為銳角,
故當視角∠MSN取最大值時,cosθ=.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:解答題
如圖,函數(shù)f(x)=x+的定義域為(0,+∞).設點P是函數(shù)圖象上任一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M,N.
(1)證明:|PM|·|PN|為定值.
(2)O為坐標原點,求四邊形OMPN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式.
(2)當x∈[-6,-]時,求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=sin(2x+),其中x∈R,則下列結論中正確的是( )
(A)f(x)是最小正周期為π的偶函數(shù)
(B)f(x)的一條對稱軸是x=
(C)f(x)的最大值為2
(D)將函數(shù)y=sin2x的圖象左移個單位得到函數(shù)f(x)的圖象
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十四第三章第八節(jié)練習卷(解析版) 題型:填空題
在△ABC中,2b=a+c,B=,S△ABC=,則b= .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十四第三章第八節(jié)練習卷(解析版) 題型:選擇題
線段AB外有一點C,∠ABC=60°,AB=200km,汽車以80km/h的速度由A向B行駛,同時摩托車以50km/h的速度由B向C行駛,則運動開始幾小時后,兩車的距離最小( )
(A) (B)1 (C) (D)2
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十八第四章第四節(jié)練習卷(解析版) 題型:解答題
已知M(1+cos 2x,1),N(1,sin2x+a)(x∈R,a∈R,a是常數(shù)),且y=·(O為坐標原點).
(1)求y關于x的函數(shù)關系式y=f(x).
(2)若x∈[0,]時,f(x)的最大值為2013,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十二第三章第六節(jié)練習卷(解析版) 題型:選擇題
若函數(shù)f(x)=(sinx+cosx)2-2cos2x-m在[0,]上有零點,則實數(shù)m的取值范圍為( )
(A)[-1,] (B)[-1,1]
(C)[1,] (D)[-,-1]
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com