(2006•上海模擬)設f(x)是R上的奇函數(shù),對任意實數(shù)x都有f(x+2)=-f(x),當-1≤x≤1時,f(x)=x3
(1)求證:x=1是函數(shù)f(x)的一條對稱軸
(2)證明函數(shù)f(x)是以4為周期的函數(shù),并求x∈[1,5]時,f(x)的解析式.
分析:(1)直接根據(jù)f(x+2)=-f(x)=f(-x)對任意實數(shù)X成立即可得到結論;
(2)根據(jù)f(x+4)=-f(x+2)=-[-f(x)]=f(x)即可得到 f(x)是以4為最小正周期的周期函數(shù);再結合對稱軸以及周期即可求出x∈[1,5]時,f(x)的解析式.
解答:解:(1)證明:因為奇函數(shù),所以f(x+2)=-f(x)=f(-x)對任意實數(shù)X成立.
又因為x+2,-x關于直線x=1對稱,
故:直線x=1是函數(shù)f(x)圖象上的一條對稱軸
(2)證明:因為:f(x+2)=-f(x)
所以:f(x+4)=-f(x+2)=-[-f(x)]=f(x)
∴f(x)是以4為最小正周期的周期函數(shù)因為:直線x=1是函數(shù)f(x)圖象上的一條對稱軸;
所以:1≤x≤3的圖象與-1≤x≤1的圖象關于直線x=1對稱.
故:f(x)=-(x-2)3,1≤x≤3;
∵f(x)是以4為最小正周期的周期函數(shù)
∴3≤x≤5的圖象與-1≤x≤1的圖象
∴f(x)=(x-4)3,3≤x≤5.
∴f(x)=
-(x-2)3        1≤x≤3
(x-4)3           3<x≤5
點評:本題主要考查了函數(shù)的周期性以及奇偶性,對稱性.要特別利用好題中的關系式f(x+2)=-f(x).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)若
lim
n→∞
22n-1-a•3n+1
3n+1+a•22n
=1
,則a=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)已知a≠b,且a2sinθ+acosθ-
π
4
=0
b2sinθ+bcosθ-
π
4
=0
,則連接兩點(a,a2),(b,b2)的直線與單位圓的位置關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)若集合M={y|y=(2006)-x},N={y|y=
x-2006
}
,則M∩N=
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)函數(shù)y=2-x+1,x>0的反函數(shù)是
y=-log2(x-1),x∈(1,2)
y=-log2(x-1),x∈(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)△ABC的兩條邊上的高的交點為H,外接圓的圓心為O,則
OH
=m(
OA
+
OB
+
OC
)
,則實數(shù)m=
1
1

查看答案和解析>>

同步練習冊答案