一個(gè)如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點(diǎn)至兩端點(diǎn)所在直線的距離)的拋物線形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.

(1)6,(2).

解析試題分析:(1)由題意得:保持其缺口寬度不變,需在A,B點(diǎn)處分別作拋物線的切線. 以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為軸,建立平面直角坐標(biāo)系,則,從而邊界曲線的方程為,.因?yàn)閽佄锞在點(diǎn)處的切線斜率,所以,切線方程為,與軸的交點(diǎn)為.此時(shí)梯形的面積平方分米,即為所求.(2)若保持其缺口深度不變,需使兩腰分別為拋物線的切線. 設(shè)梯形腰所在直線與拋物線切于時(shí)面積最小.此時(shí),切線方程為,其與直線相交于,與軸相交于.此時(shí),梯形的面積,.故,當(dāng)時(shí),面積有最小值為
解:(1)以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為軸,建立平面直角坐標(biāo)系,則
從而邊界曲線的方程為,
因?yàn)閽佄锞在點(diǎn)處的切線斜率,
所以,切線方程為,與軸的交點(diǎn)為
此時(shí)梯形的面積平方分米,即為所求.
(2)設(shè)梯形腰所在直線與拋物線切于時(shí)面積最。
此時(shí),切線方程為,
其與直線相交于,
軸相交于.                                 
此時(shí),梯形的面積.……11分
(這兒也可以用基本不等式,但是必須交代等號(hào)成立的條件)
=0,得,
當(dāng)時(shí),單調(diào)遞減;
當(dāng)時(shí),單調(diào)遞增,
故,當(dāng)時(shí),面積有最小值為.                  
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)最值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) ,
(1)當(dāng)  時(shí),求函數(shù)  的最小值;
(2)當(dāng) 時(shí),求證:無(wú)論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬(wàn)件。
(1)求公司一年的利潤(rùn)y(萬(wàn)元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤(rùn)y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過(guò)20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤(rùn)日正品贏利額日廢品虧損額)
(1)將該車間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)()
(1)若在點(diǎn)處的切線方程為,求的解析式及單調(diào)遞減區(qū)間;
(2)若上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求上的最大值;
(3)試證明:對(duì)任意,不等式都成立(其中是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


已知的導(dǎo)函數(shù),,且函數(shù)的圖象過(guò)點(diǎn).
(1)求函數(shù)的表達(dá)式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案