已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若,求的單調(diào)區(qū)間;

(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

 

【答案】

(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為;(3).

【解析】

試題分析:(1) 利用導(dǎo)數(shù)的幾何意義求切線的斜率,再求切點(diǎn)坐標(biāo),最后根據(jù)點(diǎn)斜式直線方程求切線方程;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,注意在解不等式時(shí)需要對(duì)參數(shù)的范圍進(jìn)行討論;(3)根據(jù)單調(diào)性求函數(shù)的極值,根據(jù)其圖像交點(diǎn)的個(gè)數(shù)確定兩個(gè)函數(shù)極值的大小關(guān)系,然后解對(duì)應(yīng)的不等式.

試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image014.png">,

所以,

所以曲線在點(diǎn)處的切線斜率為.

又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image019.png">,

所以所求切線方程為,即.          2分

(2),

①若,當(dāng)時(shí),;當(dāng)時(shí),.

所以的單調(diào)遞減區(qū)間為,

單調(diào)遞增區(qū)間為.                    4分

②若,,

所以的單調(diào)遞減區(qū)間為.                     5分

③若,當(dāng)時(shí),;當(dāng)時(shí),.

所以的單調(diào)遞減區(qū)間為;

單調(diào)遞增區(qū)間為.                  7分

(3)由(2)知函數(shù)上單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減,

所以處取得極小值,在處取得極大值.  8分

,得.

當(dāng)時(shí),;當(dāng)時(shí),.

所以上單調(diào)遞增,在單調(diào)遞減,在上單調(diào)遞增.

處取得極大值,在處取得極小值. 10分

因?yàn)楹瘮?shù)與函數(shù)的圖象有3個(gè)不同的交點(diǎn),

所以,即.  所以.         12分

考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.切線方程;3.利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性4.分類討論;5.極值6.零點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù),為正數(shù))

(I)若處取得極值,且的一個(gè)零點(diǎn),求的值;(II)若,求在區(qū)間上的最大值;(III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東華附、省高三上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

1)求函數(shù)的零點(diǎn);

2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間內(nèi),另一個(gè)在區(qū)間外,

的取值范圍;

3)已知且函數(shù)上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),.

函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),求函數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河北省石家莊市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若,求的單調(diào)區(qū)間;

(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案