(12分)已知函數(shù)對于任意的滿足.
(1)求的值;
(2)求證:為偶函數(shù);
(3)若在上是增函數(shù),解不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)同時滿足:
①對于任意的,總有; ②;
③若,則有成立。
求的值;
求的最大值;
若對于任意,總有恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)遞減函數(shù),
⑴求函數(shù)的解析式;
⑵討論函數(shù)的奇偶性。 (12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實數(shù)有:且時,.
(1)證明:;
(2)證明:當(dāng)時,;
(3)當(dāng)時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(16分)已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,.
(1)當(dāng)時,求函數(shù)的解析式;
(2)若函數(shù)為單調(diào)遞減函數(shù);
①直接寫出的范圍(不必證明);
②若對任意實數(shù),恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司為了實現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個激勵銷售人員的獎勵方案:在銷售利潤達(dá)到10萬元時,按銷售利潤進(jìn)行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不能超過利潤的%.現(xiàn)有三個獎勵模型:,分析與推導(dǎo)哪個函數(shù)模型能符合該公司的要求?并給予證明.(注:)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com