橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,短軸長為2,則橢圓方程是(  )
A.B.C.D.
B

試題分析:因?yàn)闄E圓的中心在原點(diǎn),說明方程為標(biāo)準(zhǔn)方程,同時(shí)焦點(diǎn)在x軸上,說明x2比上的分母大,同時(shí)長軸長為2a=4,a=2,短軸長為2b=2,b=1,那么可知橢圓的方程為,故選B.
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解橢圓的幾何性質(zhì),運(yùn)用a,b,c表示出來得到求解。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為的橢圓過點(diǎn),為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn)。

(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點(diǎn)分別為AB,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線ly=-2分別交于點(diǎn)M、N.

(1)設(shè)直線APPB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上有兩點(diǎn)P、Q ,O為原點(diǎn),若OP、OQ斜率之積為,等于(      )
A. 4B. 64C. 20D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線 和橢圓,則直線和橢圓相交有(   )
A.兩個(gè)交點(diǎn)B.一個(gè)交點(diǎn)C.沒有交點(diǎn)D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的離心率為,焦點(diǎn)在x軸上且長軸長為30.若曲線上的點(diǎn)到橢圓的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于10,則曲線的標(biāo)準(zhǔn)方程為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=x+3與曲線=1交點(diǎn)的個(gè)數(shù)為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,那么的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心在原點(diǎn)O,它的短軸長為,相應(yīng)的焦點(diǎn)的準(zhǔn)線了l與x軸相交于A,|OF1|=2|F1A|.
(1)求橢圓的方程;
(2)過橢圓C的左焦點(diǎn)作一條與兩坐標(biāo)軸都不垂直的直線l,交橢圓于P、Q兩點(diǎn),若點(diǎn)M在軸上,且使MF2的一條角平分線,則稱點(diǎn)M為橢圓的“左特征點(diǎn)”,求橢圓C的左特征點(diǎn);
(3)根據(jù)(2)中的結(jié)論,猜測橢圓的“左特征點(diǎn)”的位置.

查看答案和解析>>

同步練習(xí)冊答案