【題目】已知函數(shù).
(1)若函數(shù)在時取得極值,求實數(shù)的值;
(2)若對任意恒成立,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由 ,依題意有: ,即 ,通過檢驗滿足在 時取得極值. (2)依題意有: 從而 ,令,得:,,通過討論① 和②,進(jìn)而求出 的取值范圍.
試題解析:
(1),
依題意有,即,解得.
檢驗:當(dāng)時,.
此時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,滿足在時取得極值.
綜上可知.
(2)依題意可得:對任意恒成立等價轉(zhuǎn)化為在上恒成立.
因為,
令得:,.
①當(dāng),即時,函數(shù)在上恒成立,則在上單調(diào)遞增,
于是,解得,此時;
②當(dāng),即時,時,;時,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
于是,不合題意,此時.
綜上所述,實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標(biāo)原點(diǎn),圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)設(shè)直線和圓相交于點(diǎn)、兩點(diǎn),求的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:的離心率為,左、右頂點(diǎn)分別為、,線段的長為4.點(diǎn)在橢圓上且位于第一象限,過點(diǎn),分別作,,直線,交于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);
(2)直線與橢圓的另一交點(diǎn)為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項中最大值為,最小值為,令,數(shù)列的前n項和為,數(shù)列的前n項和為.
(1)若數(shù)列是首項為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請證明;若不是,請舉例說明;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),定義,其中為坐標(biāo)原點(diǎn),對于下列結(jié)論:
符合的點(diǎn)的軌跡圍成的圖形面積為8;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則使得“最小的點(diǎn)有無數(shù)個”的充要條件是;
設(shè)點(diǎn)是橢圓上任意一點(diǎn),則.
其中正確的結(jié)論序號為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),定義,其中為坐標(biāo)原點(diǎn),對于下列結(jié)論:
符合的點(diǎn)的軌跡圍成的圖形面積為8;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則使得“最小的點(diǎn)有無數(shù)個”的必要條件是;
設(shè)點(diǎn)是圓上任意一點(diǎn),則.
其中正確的結(jié)論序號為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進(jìn)入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨(dú)立互不影響.
(1)求這兩人至少有一人通過筆試的概率;
(2)求這兩人筆試都通過卻都未被錄用的概率;
(3)記這兩人中最終被錄用的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動會將在深圳舉行,組委會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:),身高在以上(包括)定義為“高個子”,身高在以下(不包括)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高以上(包括)的志愿者中選出男、女各一人,設(shè)這2人身高相差(),求的分布列和數(shù)學(xué)期望(均值).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com