已知sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
π
2
<θ<π),求tanθ的值.
分析:利用同角三角函數(shù)間的基本關(guān)系得到sin2θ+cos2θ=1,將已知的兩等式代入,列出關(guān)于m的方程,求出方程的解得到m的值,確定出sinθ與cosθ的值,即可求出tanθ的值.
解答:解:∵sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,且sin2θ+cos2θ=1,
∴(
m-3
m+5
2+(
4-2m
m+5
2=1,即m(m-8)=0,
解得:m=0或m=8,
當(dāng)m=0時,由
π
2
<θ<π,得到sinθ>0,而sinθ=-
3
5
<0,不合題意,舍去;
故m=8,
∴sinθ=
5
13
,cosθ=-
12
13

則tanθ=
sinθ
cosθ
=-
5
12
點(diǎn)評:此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,sin(ωx+
π
3
))
n
=(2,2sin(ωx-
π
6
))
(其中ω為正常數(shù))
(Ⅰ)若ω=1,x∈[
π
6
3
]
,求
m
n
時tanx的值;
(Ⅱ)設(shè)f(x)=
m
n
-2,若函數(shù)f(x)的圖象的相鄰兩個對稱中心的距離為
π
2
,求f(x)在區(qū)間[0,
π
2
]
上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角.
(Ⅰ)求角C的大。
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx)(ω>0)
,設(shè)函數(shù)f(x)=
m
n
且f(x)的最小正周期為π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)先將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,然后將圖象向下平移
1
2
個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上[0,
4
]
上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,其中θ∈[
π
2
,π
],則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα=,且角α的終邊在第二象限,求cosα和tanα的值;

(2)已知tanα=3,求sinα和cosα的值;

(3)已知sinα=m(|m|≤1),求cosα和tanα的值.

查看答案和解析>>

同步練習(xí)冊答案