【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標方程為,點的一個交點,其極坐標為.設(shè)射線與曲線相交于,兩點,與曲線相交于,兩點.

1)求,的值;

2)求的最大值.

【答案】12

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換,進一步利用點的坐標求出結(jié)果.

2)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.

解:(1)將曲線的參數(shù)方程化成普通方程:,

的直角坐標為.

因為上,所以,解得.

因為上,所以,解得.

2)曲線化為極坐標方程:.

設(shè)的極坐標為,的極坐標為,則,.

因為,分別是,的交點,所以.

所以

,

其中為銳角,且.

因為,當(dāng)時等號成立.

所以的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題隨機變量服從正態(tài)分布,且,則.現(xiàn)給出四個命題:,,其中真命題的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,點,分別為棱,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是一個在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個人說“能”,而有個人說“不能”,那么應(yīng)用你學(xué)過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中中,曲線C的參數(shù)方程為參數(shù),.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

1)設(shè)P是曲線C上的一個動點,當(dāng)時,求點P到直線的距離的最大值;

2)若曲線C上所有的點均在直線的右下方,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;

(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一世又叫一代”.東漢·王充《論衡·宜漢篇》:且孔子所謂一世,三十年也,清代·段玉裁《說文解字注》:三十年為一世,按父子相繼曰世”.而當(dāng)代中國學(xué)者測算一代平均為25.另根據(jù)國際一家研究機構(gòu)的研究報告顯示,全球家族企業(yè)的平均壽命其實只有26年,約占總量的的家族企業(yè)只能傳到第二代,約占總量的的家族企業(yè)只能傳到第三代,約占總量的家族企業(yè)可以傳到第四代甚至更久遠(為了研究方便,超過四代的可忽略不計).根據(jù)該研究機構(gòu)的研究報告,可以估計該機構(gòu)所認為的一代大約為(

A.23B.22C.21D.20

查看答案和解析>>

同步練習(xí)冊答案