已知四邊形ABCD為直角梯形,ADBC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2
(1)求PC的長(zhǎng);
(2)求異面直線PCBD所成角的余弦值的大;
(3)求證:二面角BPCD為直二面角. 
(1) (2) PCBD所成角的余弦值為 (3)證明略
 因?yàn)?i>PA⊥平面AC,ABBC,∴PBBC,即∠PBC=90°,由勾股定理得PB=
PC=.
(2)解: 如圖,過(guò)點(diǎn)CCEBDAD的延長(zhǎng)線于E,連結(jié)PE,則PCBD所成的角為∠PCE或它的補(bǔ)角.

CE=BD=,且PE=
∴由余弦定理得
cosPCE=
PCBD所成角的余弦值為.
(3)證明:設(shè)PB、PC中點(diǎn)分別為G、F,連結(jié)FG、AGDF,

GFBCAD,且GF=BC=1=AD,
從而四邊形ADFG為平行四邊形,
AD⊥平面PAB,∴ADAG,
ADFG為矩形,DFFG.
在△PCD中,PD=,CD=,FBC中點(diǎn),
DFPC
從而DF⊥平面PBC,故平面PDC⊥平面PBC
即二面角BPCD為直二面角.?
另法(向量法): (略)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

桌子上放著一個(gè)長(zhǎng)方體和圓柱(如圖1-2-30),下列圖1-2-31所示三幅圖分別是_______.

圖1-2-30

圖1-2-31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)在五棱錐中,PA=AB=AE=2,PB=PE=, BC=DE=,.(Ⅰ)求證:PA平面(Ⅱ)求二面角 的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐PABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD是矩形,問(wèn)底面的邊BC上是否存在點(diǎn)E.
(1)使∠PED=90°;
(2)使∠PED為銳角. 證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正三棱柱ABCA1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為a.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫(xiě)出AB、A1C1的坐標(biāo);
(2)求AC1與側(cè)面ABB1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體的棱長(zhǎng)為1,過(guò)點(diǎn)A作平面的垂線,垂足為點(diǎn)
有下列四個(gè)命題
A.點(diǎn)的垂心
B.垂直平面
C.二面角的正切值為
D.點(diǎn)到平面的距離為
其中真命題的代號(hào)是                        .(寫(xiě)出所有真命題的代號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)如圖某一幾何體的展開(kāi)圖,其中是邊長(zhǎng)為6的正方形,,,,點(diǎn)、、、、共線.(Ⅰ)沿圖中虛線將它們折疊起來(lái),使、、四點(diǎn)重合為點(diǎn),請(qǐng)畫(huà)出其直觀圖;


(Ⅱ)求二面角的大;(Ⅲ)試問(wèn)需要幾個(gè)這樣的幾何體才能拼成一個(gè)棱長(zhǎng)為6的正方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知空間四邊形的兩條對(duì)角線的長(zhǎng),所成的角為,,分別是,,的中點(diǎn),求四邊形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐S-ABC的底面是正三角形,點(diǎn)A在側(cè)面SBC上的射影H是△SBC的垂心,SA=a,則此三棱錐體積最大值是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案