甲、乙兩個排球隊進行比賽采用五局三勝的規(guī)則,即先勝三局的隊獲勝,比賽到此也就結(jié)束,,甲隊每局取勝的概率為0.6,則甲隊3比1的勝乙隊的概率為(  )
A.B.C.D.
B

試題分析:甲隊每局輸?shù)母怕蕿?.4,甲隊3比1的勝乙隊,則可以是甲第一局輸,后三局勝,概率為;也可以是甲第一局勝,第二局輸,后兩局勝,概率為;也可以是甲前兩局勝,第三局輸,最后一局勝,概率為,所以所求概率為。故選B。
點評:獨立重復試驗概率的求法:一般地,如果在一次試驗中某事件發(fā)生的概率是P,那么在n次獨立重復試驗中這個事件恰好發(fā)生k次的概率。本題需要注意的是,若要用公式計算時,里面已包括甲前三局勝、第四局輸?shù)那闆r,則需減去這種情況的概率。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在一個口袋中裝有12個大小相同的黑球、白球和紅球。已知從袋中任意摸出2個球,至少得到一個黑球的概率是。
求:(1)袋中黑球的個數(shù);
(2)從袋中任意摸出3個球,至少得到2個黑球的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市為了推動全民健身運動在全市的廣泛開展,該市電視臺開辦了健身競技類欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒有影響,通過關(guān)卡者即可獲獎,F(xiàn)有甲、乙、丙人參加當天的闖關(guān)比賽,已知甲獲獎的概率為,乙獲獎的概率為,丙獲獎而甲沒有獲獎的概率為。
(Ⅰ)求三人中恰有一人獲獎的概率;
(Ⅱ)求三人中至少有兩人獲獎的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在一個袋子中裝有分別標注1、2、3、4、5的5個形狀大小完全相同的小球,現(xiàn)從中隨機取出2個小球,則取出小球標注的數(shù)字之差的絕對值為2或4的概率是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,長方形的面積為2,將100顆豆子隨機地撒在長方形內(nèi),其中恰好有60顆豆子落在陰影部分內(nèi),則用隨機模擬的方法可以估計圖中陰影部分的面積為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


由于某高中建設了新校區(qū),為了交通方便要用三輛通勤車從老校區(qū)把教師接到新校區(qū).已知從新校區(qū)到老校區(qū)有兩條公路,汽車走一號公路堵車的概率為,不堵車的概率為;汽車走二號公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號公路,丙汽車由于其他原因走二號公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

不透明的袋中有8張大小和形狀完全相同的卡片,卡片上分別寫有1,1,2,2,3,3,,.現(xiàn) 從中任取3張卡片,假設每張卡片被取出的可能性相同.
(I)求取出的三張卡片中至少有一張字母卡片的概率;
(Ⅱ)設表示三張卡片上的數(shù)字之和.當三張卡片中含有字母時,則約定:有一個字母和二個相同數(shù)字時為這二個數(shù)字之和,否則,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某學校為調(diào)查高二年級學生的身高情況,按隨機抽樣的方法抽取200名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有48人.
(Ⅰ)在抽取的學生中,身高不超過165cm的男、女生各有多少人?并估計男生的平均身高。
(Ⅱ)在上述200名學生中,從身高在170~175cm之間的學生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

隨機變量服從二項分布,且等于(    )
A.B.C.1D.0

查看答案和解析>>

同步練習冊答案