精英家教網(wǎng)如圖所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中點(diǎn),
則二面角M-DC-A的大小為( 。
A、
3
B、
π
3
C、
π
4
D、
π
6
分析:根據(jù)已知中PD⊥平面ABCD,底面ABCD是正方形,我們易判斷出∠MDA即為二面角M-DC-A的平面角,再根據(jù)PD=AB,M是PA的中點(diǎn),我們易根據(jù)等腰直角三角形的性質(zhì)得到結(jié)果.
解答:精英家教網(wǎng)解:如圖所示
∵PD⊥平面ABCD,CD?平面ABCD,
∴PD⊥CD,
又由底面ABCD是正方形,
∴CD⊥AD
∵AD∩PD=D
∴CD⊥平面PAD
則MD⊥CD
即∠MDA即為二面角M-DC-A的平面角
在Rt△PDA中,PD=AD,M是PA的中點(diǎn),
∴∠MDA=
π
4

故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角的求法,解答的關(guān)鍵是求出二面角的平面角,將問(wèn)題轉(zhuǎn)化為一個(gè)解三角形問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示精英家教網(wǎng),已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問(wèn)當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(II)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥OD時(shí),求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•潮州二模)如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=
1
3
DB,點(diǎn)C為圓O上一點(diǎn),且BC=
3
AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)求證:PA⊥CD;
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知ABCD是正方形,邊長(zhǎng)為2,PD⊥平面ABCD.
(1)若PD=2,①求異面直線PC與BD所成的角,②求二面角D-PB-C的余弦值;
③在PB上是否存在E點(diǎn),使PC⊥平面ADE,若存在,確定點(diǎn)E位置,若不存在說(shuō)明理由;
(2)若PD=m,記二面角D-PB-C的大小為θ,若θ<60°,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市龍灣中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中點(diǎn),
則二面角M-DC-A的大小為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案