精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sin2x+2sinx•sin(
π
2
-x)+3sin2(
2
-x)

(1)若tanx=
1
2
,求f(x)的值;
(2)求函數f(x)最小正周期及單調遞減區(qū)間.
分析:(1)f(x)解析式分母看做“1”,利用同角三角函數間的基本關系化簡,將tanx的值代入計算即可求出值;
(2)f(x)解析式利用同角三角函數間的基本關系化簡,再利用二倍角的正弦、余弦函數公式化簡,利用兩角和與差的正弦函數公式化為一個角的正弦函數找出ω的值,代入周期公式即可求出f(x)的最小正周期,利用正弦函數的單調性即可確定出f(x)的單調遞減區(qū)間.
解答:解 (1)f(x)=sin2x+2sinx•cosx+3cos2x=
sin2x+2sinxcosx+3cos2x
sin2x+cos2x
=
tan2x+2tanx+3
tan2x+1
=
17
5
;
(2)f(x)=sin2x+2sinx•cosx+3cos2x=sin2x+cos2x+2=
2
sin(2x+
π
4
)+2,
∵ω=2,
∴f(x)的最小正周期為T=
2
=π;
π
2
+2kπ≤2x+
π
4
2
+2kπ,k∈Z,解得:
π
8
+kπ≤x≤
8
+kπ,k∈Z,
則f(x)的單調遞減區(qū)間為[
π
8
+kπ,
8
+kπ],k∈Z.
點評:此題考查了二倍角的正弦、余弦函數公式,誘導公式的作用,兩角和與差的正弦函數公式,三角函數的周期性及其求法,以及正弦函數的單調性,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(附加題)
(Ⅰ)設非空集合S={x|m≤x≤l}滿足:當x∈S時有x2∈S,給出下列四個結論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結論為
②③④
②③④

(Ⅱ)已知函數f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

將正奇數列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數表:
記aij是這個數表的第i行第j列的數.例如a43=17
(Ⅰ)  求該數表前5行所有數之和S;
(Ⅱ)2009這個數位于第幾行第幾列?
(Ⅲ)已知函數f(x)=
3x
3n
(其中x>0),設該數表的第n行的所有數之和為bn,
數列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•開封二模)已知函數f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數f(x)的單調遞增區(qū)間;
(II)記△ABC的內角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•黑龍江一模)已知函數f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數f(x)的單調遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃山模擬)已知函數f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數集合M,若存在實數s,使得M中任何數都不超過s,則稱s是M的一個上界.已知e是無窮數列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數的底數),求實數a的最大值.

查看答案和解析>>

同步練習冊答案