兩個(gè)人射擊,甲射擊一次中靶概率是,乙射擊一次中靶概率是,
(Ⅰ)兩人各射擊1次,兩人總共中靶至少1次就算完成目標(biāo),則完成目標(biāo)概率是多少?
(Ⅱ)兩人各射擊2次,兩人總共中靶至少3次就算完成目標(biāo),則完成目標(biāo)的概率是多少?
(Ⅲ)兩人各射擊5次,兩人總共中靶至少1次的概率是否超過(guò)99%?
(Ⅰ)(Ⅱ)(Ⅲ)超過(guò)

試題分析:(Ⅰ)共三種情況:乙中靶甲不中; 甲中靶乙不中;
甲乙全。 ∴概率是.   4分
(Ⅱ)兩類情況:
共擊中3次;
共擊中4次,
.    10分
(III),超過(guò).    14分
點(diǎn)評(píng):本題第一問(wèn)考查的是相互獨(dú)立事件同時(shí)發(fā)生的概率,第二問(wèn)考查的是相互獨(dú)立事件同時(shí)發(fā)生與獨(dú)立重復(fù)試驗(yàn)相結(jié)合的概率,概率題目當(dāng)直接分情況考慮較復(fù)雜時(shí)可考慮其對(duì)立事件
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍(lán)天綠樹(shù)、愛(ài)護(hù)環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時(shí)每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多3分或打滿7局時(shí)停止.
設(shè)某學(xué)校選手甲和選手乙比賽時(shí),甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知
第三局比賽結(jié)束時(shí)比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程有實(shí)根的概率;
(2)求的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是離散型隨機(jī)變量,,且,又已知,則的值為(   ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知, 若, 則=(  )
A.0.2B.0.3 C.0.7D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知每個(gè)人的血清中含有乙型肝炎病毒的概率為3‰,混合100人的血清,則混合血清中有乙型肝炎病毒的概率約為(精確到小數(shù)點(diǎn)后四位)  ________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知隨機(jī)變量服從正態(tài)分布,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(其中)所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在軸上的雙曲線方程的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購(gòu)買”字樣,購(gòu)買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為。甲、乙、丙三位同學(xué)每人購(gòu)買了一瓶該飲料。
(1)求甲中獎(jiǎng)且乙、丙沒(méi)有中獎(jiǎng)的概率;
(2)求中獎(jiǎng)人數(shù)的分布列及數(shù)學(xué)期望E。

查看答案和解析>>

同步練習(xí)冊(cè)答案