如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OPOA2;

(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓OB點(diǎn).過B點(diǎn)的切線交直線ONK.證明:OKM90°.

 

見解析

【解析】(1)因?yàn)?/span>MA是圓O的切線,所以OAAM.又因?yàn)?/span>APOM,在RtOAM中,由射影定理知,OA2OM·OP.

(2)因?yàn)?/span>BK是圓O的切線,BNOK,同(1),有OB2ON·OK,又OBOA,所以OP·OMON·OK,即NOPMOK

所以ONP∽△OMK,故OKMOPN90°

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題

已知雙曲線1(a>0,b>0)的漸近線方程為y±x,則它的離心率為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:解答題

ABC中,角AB,C所對(duì)的邊分別為ab,c,已知cos C(cos Asin A)cos B0.

(1)求角B的大小;

(2)ac1,求b的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:解答題

某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)促銷活動(dòng),促銷規(guī)則如下:到該商場(chǎng)購物消費(fèi)滿100元就可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(jiǎng)(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動(dòng)過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎(jiǎng),獲得10元獎(jiǎng)金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎(jiǎng),獲得5元獎(jiǎng)金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(jiǎng)(若指針停到兩區(qū)間的實(shí)線處,則重新轉(zhuǎn)動(dòng)).若顧客在一次消費(fèi)中多次中獎(jiǎng),則對(duì)其獎(jiǎng)勵(lì)進(jìn)行累加.已知顧客甲到該商場(chǎng)購物消費(fèi)了268元,并按照規(guī)則參與了促銷活動(dòng).

(1)求顧客甲中一等獎(jiǎng)的概率;

(2)X為顧客甲所得的獎(jiǎng)金數(shù),求X的分布列及其數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題

已知隨機(jī)變量XN(1,4)P(X<2)0.72,則P(1<X<2)等于(  )

A0.36 B0.16 C0.22 D0.28

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題

如圖,已知ABAC是圓的兩條弦,過點(diǎn)B作圓的切線與AC的延長線相交于點(diǎn)D.過點(diǎn)CBD的平行線與圓相交于點(diǎn)E,與AB相交于點(diǎn)FAF3,FB1EF,則線段CD的長為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題

如圖,點(diǎn)A、BC都在O上,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若AB5,BC3,CD6,則線段AC的長為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)exln(xm)

(1)設(shè)x0f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;

(2)當(dāng)m≤2時(shí),證明f(x)>0.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)xsin x在區(qū)間[0,2π]上的零點(diǎn)個(gè)數(shù)為(  )

A1 B2 C3 D4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案