如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.
(1)證明:OM·OP=OA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓O于B點(diǎn).過B點(diǎn)的切線交直線ON于K.證明:∠OKM=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題
已知雙曲線=1(a>0,b>0)的漸近線方程為y=±x,則它的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cos C+(cos A-sin A)cos B=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:解答題
某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)促銷活動(dòng),促銷規(guī)則如下:到該商場(chǎng)購物消費(fèi)滿100元就可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(jiǎng)(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動(dòng)過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎(jiǎng),獲得10元獎(jiǎng)金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎(jiǎng),獲得5元獎(jiǎng)金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(jiǎng)(若指針停到兩區(qū)間的實(shí)線處,則重新轉(zhuǎn)動(dòng)).若顧客在一次消費(fèi)中多次中獎(jiǎng),則對(duì)其獎(jiǎng)勵(lì)進(jìn)行累加.已知顧客甲到該商場(chǎng)購物消費(fèi)了268元,并按照規(guī)則參與了促銷活動(dòng).
(1)求顧客甲中一等獎(jiǎng)的概率;
(2)記X為顧客甲所得的獎(jiǎng)金數(shù),求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題
已知隨機(jī)變量X~N(1,4)且P(X<2)=0.72,則P(1<X<2)等于( ).
A.0.36 B.0.16 C.0.22 D.0.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題
如圖,已知AB和AC是圓的兩條弦,過點(diǎn)B作圓的切線與AC的延長線相交于點(diǎn)D.過點(diǎn)C作BD的平行線與圓相交于點(diǎn)E,與AB相交于點(diǎn)F,AF=3,FB=1,EF=,則線段CD的長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題
如圖,點(diǎn)A、B、C都在⊙O上,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若AB=5,BC=3,CD=6,則線段AC的長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=x-sin x在區(qū)間[0,2π]上的零點(diǎn)個(gè)數(shù)為( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com