【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).

1)求的值;

2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

3)方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3

【解析】

1)利用二次函數(shù)閉區(qū)間上的最值,通過(guò)a0的大小討論,列出方程,即可求ab的值;

2)轉(zhuǎn)化不等式f2x)﹣k2x0,為k在一側(cè),另一側(cè)利用換元法通過(guò)二次函數(shù)在x[11]上恒成立,求出最值,即可求實(shí)數(shù)k的取值范圍;

3)化簡(jiǎn)方程f|2x1|+k3)=0,轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)的個(gè)數(shù),利用方程有三個(gè)不同的實(shí)數(shù)解,推出不等式然后求實(shí)數(shù)k的取值范圍.

解:(1gx)=ax12+1+ba

a0,∴gx)在[23]上為增函數(shù),

,可得 ,

a1,b0

2)方程f2x)﹣k2x0化為2x2k2x,

k1

t,kt22t+1

x[11],∴t,記φt)=t22t+1,

φtminφ1)=0,

k0

3)由f|2x1|+k3)=0

|2x1|2+3k)=0,

|2x1|2﹣(2+3k|2x1|+1+2k)=0|2x1|0,

|2x1|t,則方程化為t2﹣(2+3kt+1+2k)=0t0),

∵方程|2x1|2+3k)=0有三個(gè)不同的實(shí)數(shù)解,

∴由t|2x1|的圖象(如圖)知,

t2﹣(2+3kt+1+2k)=0有兩個(gè)根t1、t2,且0t11t20t11,t21,

φt)=t2﹣(2+3kt+1+2k),

 

k0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= .

(1)求函數(shù)f(x)的定義域和值域;

(2)設(shè)F(x)=m+f(x),求函數(shù)F(x)的最大值的表達(dá)式g(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)民族古典文化,市電視臺(tái)舉行古詩(shī)詞知識(shí)競(jìng)賽,某輪比賽由節(jié)目主持人隨機(jī)從題庫(kù)中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負(fù)10分.根據(jù)以往統(tǒng)計(jì),某參賽選手能答對(duì)每一個(gè)問(wèn)題的概率均為;現(xiàn)記該選手在回答完個(gè)問(wèn)題后的總得分為

1)求)的概率;

2)記,求的分布列,并計(jì)算數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是(  )

A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過(guò)50

B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)

C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分

D. 在數(shù)列中,,可得,由此歸納出的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若x,求,的值;

2)若x,,試判斷的奇偶性;

3)若函數(shù)在其定義域上是增函數(shù),,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與軸交點(diǎn)的橫坐標(biāo)為.

(1)求;

(2)證明:當(dāng)時(shí),曲線與直線只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);

1當(dāng)時(shí),若,求的取值范圍;

2若定義在上奇函數(shù)滿足,且當(dāng)時(shí), ,

上的反函數(shù)

3對(duì)于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)

數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓上一動(dòng)點(diǎn),過(guò)點(diǎn)軸,垂足為點(diǎn),中點(diǎn)為

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程

Ⅱ)過(guò)點(diǎn)的直線交于兩點(diǎn),當(dāng)時(shí),求線段的垂直平分線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案