【題目】新能源汽車的春天來了!2018年3月5日上午,李克強總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.某人計劃于2018年5月購買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解到近五個月實際銷量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
銷量(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷嶋H銷量(萬輛)與月份編號之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測2018年5月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;
(2)2018年6月12日,中央財政和地方財政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對購車補貼進行新一輪調(diào)整.已知某地擬購買新能源汽車的消費群體十分龐大,某調(diào)研機構(gòu)對其中的200名消費者的購車補貼金額的心理預(yù)期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
補貼金額預(yù)期值區(qū)間(萬元) | ||||||
20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現(xiàn)用隨機抽樣方法從該地區(qū)擬購買新能源汽車的所有消費者中隨機抽取3人,記被抽取3人中對補貼金額的心理預(yù)期值不低于3萬元的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù):①回歸方程,其中,,②,.
【答案】(1)約為2萬輛;(2)見解析
【解析】
(1)利用最小二乘法求關(guān)于的線性回歸方程為,再令得到2018年5月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量.(2)先分析得到~,再根據(jù)二項分布求的分布列及數(shù)學(xué)期望.
(1)易知,,
,,
則關(guān)于的線性回歸方程為,
當(dāng)時,,即2018年5月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量約為2萬輛.
(2)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購買新能源汽車的消費者,對補貼金額的心理預(yù)期值不低于3萬元的概率為,由題意可知~,的所有可能取值為0,1,2,3
的分布列為:
,
,
0 | 1 | 2 | 3 | |
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.
(1)已知G,H分別為EC,F(xiàn)B的中點,求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 ,AB=BC,求二面角F﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(1)當(dāng)m=3時,判斷直線l與C的位置關(guān)系;
(2)當(dāng)C上有且只有一點到直線l的距離等于 時,求C上到直線l距離為2 的點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(.(12分)在一次購物抽獎活動中,假設(shè)某10張券中有一等獎獎券1張,可獲價值50元的獎品;有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒獎。某顧客從此10張獎券中任抽2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值X(元)的概率分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為調(diào)查高中生選修課的選修傾向與性別關(guān)系,隨機抽取50名學(xué)生,得到如表的數(shù)據(jù)表:
傾向“平面幾何選講” | 傾向“坐標(biāo)系與參數(shù)方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
(1)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關(guān)系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關(guān)系的把握大;
附:K2= .
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)在抽取的50名學(xué)生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象,如圖所示.
(1)求函數(shù)的解析式;
(2)若方程在上有兩個不同的實根,試求的取值范圍;
(3)若,求出函數(shù)在上的單調(diào)減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com