已知、是不同的直線,、是不同的平面,有下列命題:
①若,則
②若,,則
③若,則
④若,則
其中真命題的個數(shù)是             (   )
A.B.C.D.
B
本題考查空間線面位置關系判定和性質。①若,則可能相交,②若,則可能相交,③若,則可能在平面內或,④正確。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點,F(xiàn)是BD的中點, (1)求證:BC∥平面AFE   (2)平面ABE⊥平面ACD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面的菱形,
側面是邊長為2的正三角形,且與底面垂直,的中點.
(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線是異面直線,直線分別與都相交,則直線的位置關系( )
A.可能是平行直線B.一定是異面直線C.可能是相交直線D.平行、相交、異面直線都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體棱長為1,的中點,的中點,的中點
(1)求證:
(2)求證:;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

由兩個完全相同的正四棱錐組合而成的空間幾何體的正視圖、側視圖、俯視圖相同如右圖所示,且圖中四邊形是邊長為1的正方形,則該幾何體的體積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐的底面為直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)證明:平面平面ABCD;
(2)如果,且側面的面積為8,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)
如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<).
(1)求MN的長;
(2)當a為何值時,MN的長最;
(3)當MN的長最小時,求面MNA與面MNB所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

   已知等腰直角三角形的斜邊長為4cm,以斜邊所在直線為旋轉軸,兩條直角邊旋轉一周得到的幾何體的表面積為         

查看答案和解析>>

同步練習冊答案