已知圓C:x2+y2-4x-14y+45=0.
(Ⅰ)若M(x,y)為圓C上任一點(diǎn),求K=
y-3x-6
的最大值和最小值;
(Ⅱ)已知點(diǎn)N(-6,3),直線kx-y-6k+3=0與圓C交于點(diǎn)A、B兩點(diǎn),取AB的中點(diǎn)為P,問(wèn):當(dāng)k為何值時(shí),直線AB與直線NP垂直?
分析:(1)由題意可得,圓心到直線的距離小于或等于半徑,解不等式求得K=
y-3
x-6
的最大值和最小值.
(2)由直線和圓相交的性質(zhì)可得NP⊥AB,且C,N,P三點(diǎn)共線,故有 kNP=kNC=
7-3
2-(-6)
=
1
2
,由此求得k的值.
解答:解:(1)⊙C:(x-2)2+(y-7)2=(2
2
)2

由于⊙C與直線Kx-y-6K+3=0有公共點(diǎn),故圓心到直線的距離d=
|2K-7-6K+3|
K2+1
≤r=2
2
,
解得 -2-
3
≤K≤-2+
3
,所以,Kmax=-2+
3
Kmin=-2-
3

(2)由于圓心與圓內(nèi)弦的連線與弦垂直,即CP⊥AB,又因?yàn)镹P⊥AB,
所以C,N,P三點(diǎn)共線,故 kNP=kNC=
7-3
2-(-6)
=
1
2
,
所以kAB=-2,即k=-2時(shí),直線AB與直線NP垂直.
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案