設(shè)f(x)=,若f(x)存在,則常數(shù)b的值是(    )

A.O              B.1                 C.-1            D.e

解析:本題考查了學(xué)生對函數(shù)連續(xù)性的認(rèn)識,從圖像上看,圖像沒有間斷的函數(shù)是連續(xù)函數(shù).

所以ex=1,∴(2x+b)=b,∴b=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=log
1
2
1-ax
x-1
為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)若對于區(qū)間[3,4]上的每一個x值,不等式f(x)>(
1
2
)x+m
恒成立,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(x+4)=f (x),若-1≤x≤1時,f(x)=x,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)有如下定義:
定義(1):設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義(2):設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+ax+2在x=-1處取得極大值.請回答下列問題:
(1)當(dāng)x∈[0,4]時,求f(x)的最小值和最大值;
(2)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo),并檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
,g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b為非零實常數(shù).
(1)若f(x)=1-
3
x∈[-
π
3
,
π
3
]
,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當(dāng)且僅當(dāng)x1=x2時,等號成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案