有一道數(shù)學難題,在半小時內(nèi)甲能解決的概率是,乙能解決的概率為,兩人試圖獨立地在半小時解決,則兩人都未解決的概率為________.
都未解決的概率為×.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

計算機考試分理論考試與實際操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。
(1)假設甲、乙、丙3人同時進行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?
(2)求這3人進行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(3)用X表示甲、乙、丙3人計算機考試獲“合格證書”的人數(shù),求X的分布列和數(shù)學期望EX。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

計算機畢業(yè)考試分為理論與操作兩部分,每部分考試成績只記“合格”與“不合格”,只有當兩部分考試都“合格”者,才頒發(fā)計算機“合格證書”.甲、乙兩人在理論考試中“合格”的概率依次為,在操作考試中“合格”的概率依次為,所有考試是否合格,相互之間沒有影響.則甲、乙進行理論與操作兩項考試后,恰有1人獲得“合格證書”的概率       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人破譯一密碼,它們能破譯的概率分別為,試求:
(1)兩人都能破譯的概率;
(2)兩人都不能破譯的概率;
(3)恰有一人能破譯的概率;
(4)至多有一人能破譯的概率;
(5)若要使破譯的概率為99%,至少需要多少乙這樣的人?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機抽出道題進行測試,答對一題加分,答錯一題(不答視為答錯)減分,至少得分才能入選.
(1)求甲得分的數(shù)學期望;
(2)求甲、乙兩人同時入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.甲、乙兩人練習射擊, 命中目標的概率分別為, 甲、乙兩人各射擊一次,有下列說法: ① 目標恰好被命中一次的概率為 ;② 目標恰好被命中兩次的概率為; ③ 目標被命中的概率為; ④ 目標被命中的概率為 。以上說法正確的序號依次是
A.②③   B.①②③C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某人在打靶練習中,連續(xù)射擊2次,則事件“至少有1次中靶”的互斥事件是
A.至多中靶一次B.2次都不中靶C.2次都中靶D.只有一次中靶

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中有6個黃色、4個白色的乒乓球,作不放回抽樣,每次任取一球,取2次,求第二次才取到黃色球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙、丙3位學生用互聯(lián)網(wǎng)學習數(shù)學,每天上課后獨立完成6道自我檢測題,甲答題及格的概率為,乙答題及格的概率為,丙答題及格的概率為,3人各答一次,則3人中只有1人答題及格的概率為                 (     )
(A)      (B)        (C)       (D)以上全不對
(文科)一個盒子中裝有4張卡片,上面分別寫著如下四個定義域為R的函數(shù):現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是      (    )
(A)(B)(C)(D)

查看答案和解析>>

同步練習冊答案