α∈(0,
π
2
)
,β∈(0,
π
2
)
,且cosα=
3
5
,tan(α-β)=-3,求下列各值.
(1)sin(α-
π
3
)

(2)tanβ
分析:(1)利用同角三角函數(shù)的關(guān)系,先求sinα=
4
5
,再利用差角的正弦公式可求;(2)由(1)知tanα=
4
3

,再由β=α-(α-β),利用差角的正切公式可求.
解答:解:(1)α∈(0,
π
2
)
cosα=
3
5
,∴sinα=
4
5

sin(α-
π
3
)=sinαcos
π
3
-cosαsin
π
3
=
4
5
×
1
2
-
3
5
×
3
2
=
4-3
3
10

(2)由(1)知tanα=
4
3

tanβ=tan[α-(α-β)]=
tanα-tan(α-β)
1+tanα•tan(α-β)
=
4
3
+3
1-
4
3
×3
=-
13
9
點評:本題主要考查三角恒等變換,正確的拆、配角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-3x-x3,x∈R,若θ∈[0,
π2
]
時,不等式f(cos2θ-2t)+f(4sinθ-3)≥0恒成立,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,角α的始邊與x軸的非負(fù)半軸重合且與單位圓相交于A點,它的終邊與單位圓相交于x軸上方一點B,始邊不動,終邊在運動.
(1)若點B的橫坐標(biāo)為-
4
5
,求tanα的值;
(2)若△AOB為等邊三角形,寫出與角α終邊相同的角β的集合;
(3)若α∈[0,
3
]
,請寫出弓形AB的面積S與α的函數(shù)關(guān)系式,并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+1)e2x,若0°<2α<90°,90°<β<180°a=(sinα)cosβ,b=(cosα)sinβ,c=(cosα)cosβ,則f(a),f(b),f(c)的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3(x∈R),若0≤θ<
π
2
時,f(m•sinθ)+f(2-m)>0恒成立,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2cos2x+1

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若α∈(0,
π
2
)
,且f(α)=1,求α的值.

查看答案和解析>>

同步練習(xí)冊答案