(本小題12分) 將圓O: 上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的一半 (橫坐標(biāo)不變), 得到曲線、拋物線的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn).
(1)求,的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在直線滿(mǎn)足條件:① 過(guò)的焦點(diǎn);②與交于不同兩
點(diǎn),,且滿(mǎn)足?若存在,求出直線的方程; 若不存在,說(shuō)明
理由.
(1) 的方程為:, 的方程為:。
(2)

試題分析:(1)設(shè)點(diǎn), 點(diǎn)M的坐標(biāo)為,由題意可知得到關(guān)系式。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,聯(lián)立方程組,結(jié)合韋達(dá)定理和向量數(shù)量積得到。
解:(1)設(shè)點(diǎn), 點(diǎn)M的坐標(biāo)為,由題意可知
.
所以, 的方程為的方程為:
綜上,的方程為:, 的方程為:
(2)假設(shè)存在這樣的直線,設(shè)其方程為,兩交點(diǎn)坐標(biāo)為
消去,得,


,②

將①②代入③得,解得
所以假設(shè)成立,即存在直線滿(mǎn)足條件,且的方程為
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用圖像變換準(zhǔn)確得到曲線的方程然后利用向量的數(shù)量積來(lái)求解得到參數(shù)的值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知直線經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的焦點(diǎn)為F,A, B是該拋物線上的兩點(diǎn),弦AB過(guò)焦點(diǎn)F,且,則線段AB的中點(diǎn)坐標(biāo)是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)河上有一拋物線型拱橋,當(dāng)水面距拱頂5時(shí),水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問(wèn)水面上漲到與拋物線拱頂相距多少米時(shí),小船恰好能通行。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長(zhǎng)的支柱的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)到準(zhǔn)線的距離是(  )
A.1B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線 與拋物線有公共點(diǎn),則直線的斜率的取值范圍是­­­____________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為拋物線的焦點(diǎn),直線與其交于兩點(diǎn),與軸交于點(diǎn),且以為直徑的圓過(guò)原點(diǎn),則等于(  )
.          .        .         .

查看答案和解析>>

同步練習(xí)冊(cè)答案