(本小題滿分12分)
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求的值;
(2)證明:
(1)(2)見解析。
解析試題分析:(1)
由已知條件得解得 ----------------6分
(2)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/6/lfsqf2.png" style="vertical-align:middle;" />,
由(1)知,
設(shè)
則
當(dāng)時,;當(dāng)時,
所以在上單調(diào)增加,在上單調(diào)減少。
而,故當(dāng)時,,
即 ------------12分
考點(diǎn):本題考查導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值。
點(diǎn)評:做此題的關(guān)鍵是把證明“”轉(zhuǎn)化為“證明函數(shù)y=f(x)-(2x-2)的最大值不超過0”,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得此函數(shù)的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù),,.
(1)當(dāng)時,若函數(shù)在區(qū)間上是單調(diào)增函數(shù),試求的取值范圍;
(2)當(dāng)時,直接寫出(不需給出演算步驟)函數(shù) ()的單調(diào)增區(qū)間;
(3)如果存在實(shí)數(shù),使函數(shù),()在
處取得最小值,試求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,,的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)(1)求函數(shù)的導(dǎo)數(shù).
(2)求函數(shù)f(x)=在區(qū)間[0,3]上的積分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若在處取得極值,求的值;
(Ⅱ)討論的單調(diào)性;
(Ⅲ)證明:為自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com