一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a、b、c∈(0,1)),已知他投籃一次得分的數(shù)學(xué)期望為2(不計(jì)其它得分情況),則ab的最大值為( 。
分析:利用數(shù)學(xué)期望的概念,建立等式,再利用基本不等式,即可求得ab的最大值
解答:解:由題意,投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a、b、c∈(0,1)),
∴3a+2b=2,
∴2≥2
6ab

∴ab≤
1
6
(當(dāng)且僅當(dāng)a=
1
3
,b=
1
2
時(shí)取等號(hào))
∴ab的最大值為
1
6

故選D.
點(diǎn)評(píng):本題考查數(shù)學(xué)期望,考查利用基本不等式求最值,利用數(shù)學(xué)期望的概念,建立等式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c[a、b、c∈(0,1)],已知他投籃一次得分的數(shù)學(xué)期望為1(不計(jì)其它得分情況),則ab的最大值為( 。
A、
1
48
B、
1
24
C、
1
12
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不相同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則概率P(
A
B
)等于
 

(2)一個(gè)籃球運(yùn)動(dòng)員投籃一次得2分的概率為a,得3分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的期望為2,則
2
a
+
1
3b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,得0分的概率為0.5(投籃一次得分只能3分、2分、1分或0分),其中a、b∈(0,1),已知他投籃一次得分的數(shù)學(xué)期望為1,則ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1))已知他投籃一次得分的期望為2,則
2
a
+
1
3b
的最小值為
16
3
16
3

查看答案和解析>>

同步練習(xí)冊(cè)答案