已知雙曲線C的中心是原點,右焦點為F(
3
,0)
,焦點到一條漸近線距離為
2
,則雙曲線C的漸近線方程為(  )
A、y=±
3
x
B、y=±x
C、x=±
2
2
y
D、x=±
2
y
分析:先根據(jù)雙曲線的焦點坐標,求得a和b的關(guān)系,進而代入焦點到漸近線的距離,求得a和b,則雙曲線的漸近線方程可得.
解答:解:依題意可知
a2+b2=3
3
b
a2+b2
=
2
,
解得a=1,b=
2

∴雙曲線C的漸近線方程為y=±
2
x,即x=±
2
2
y

故選C
點評:本題主要考查了雙曲線的簡單性質(zhì),點到直線的距離.屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的中心是原點,右焦點為F(
3
,0)
,一條漸近線m:x+
2
y=0,設(shè)過點A(-3
2
,0)的直線l的方向向量e=(1,k),
(1)求雙曲線C的方程;
(2)若過原點的直線a∥l,且a與l的距離為
6
,求k的值;
(3)證明:當k>
2
2
時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。

已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設(shè)過點A的直線l的方向向量。

(1)求雙曲線C的方程;

(2)若過原點的直線,且al的距離為,求K的值;

(3)證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省高二上學期12月份考試數(shù)學卷(文理) 題型:解答題

(12分)已知雙曲線C的中心是原點,右焦點為F(,0),一條漸近線m:x+y=0,設(shè)過點A(-3,0)的直線l

(1)求雙曲線C的方程;

(2)若過原點的直線a∥l,且a與l的距離為,求k的值;

(3)證明:當k>時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設(shè)過點A的直線l的方向向量。

(1)    求雙曲線C的方程; 

(2)    若過原點的直線,且a與l的距離為,求K的值;

(3)    證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.

查看答案和解析>>

同步練習冊答案