如圖所示,空間四邊形ABCD中,AB,BC,BD兩兩垂直,AB=BC=2,E為AC的中點(diǎn),異面直線AD與BE所成角的大小為arccos,求二面角D-AC-B的大。
解:以B為空間直角坐標(biāo)系的原點(diǎn)建立如圖的直角坐標(biāo)系, 則B(0,0,0),A(0,2,0),C(2,0,0),E(1,1,0),設(shè)D(0,0,t). 則=(0,-2,t),=(1,1,0) 所以,所以=,所以t=4或-4(舍), 又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60B1/0003/0290/9697f57d25233bfca2ad2206b78609b4/C/Image2277.gif">=(2,-2,0),=(1,1,-t),所以·=2+(-2)=0. 所以DE⊥AC,又BE⊥AC,所以∠DEB為二面角D-AC-B的平面角,所以tan∠DEB===2. 所以二面角D-AC-B的大小為arctan2. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過P,Q兩點(diǎn).
(1)若直線QP與橢圓C的右準(zhǔn)線相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(2)當(dāng)梯形PABQ周長最大時(shí),求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),E是B1C的中點(diǎn).
(1)求cos(,).
(2)在線段AA1上是否存在點(diǎn)F,使CF⊥平面B1DF?若存在,求出||;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,橢圓方程為+=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿足=(+),PF的延長線與橢圓的交點(diǎn)為Q,過Q與x軸平行的直線與PN的延長線交于M.
(1)求證:·=·.
(2)若=2,且||=,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,某電子器件是由三個(gè)電阻組成的回路,其中共有六個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通.
(1)求因焊接點(diǎn)脫落致使電路不通的所有不同的脫落種數(shù).
(2)每個(gè)焊接點(diǎn)脫落的概率均是,現(xiàn)在發(fā)現(xiàn)電路不通了,那么至少有兩個(gè)焊接點(diǎn)脫落的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007屆潛山中學(xué)理復(fù)(一、二)數(shù)學(xué)周考試卷 題型:044
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com