(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線在軸上的截距為,交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.
(1)(2)(3)設直線MA、MB的斜率分別為k1,k2,證明k1+k2=0即可.
解析試題分析:(1)設橢圓方程為,
,則,∴橢圓方程.
(2)∵直線l平行于OM,且在軸上的截距為m,又 ,
∴l(xiāng)的方程為:,
由,
∵直線l與橢圓交于A、B兩個不同點,
∴m的取值范圍是
(3)設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可
設
可得
而
,
∴k1+k2=0,故直線MA、MB與x軸始終圍成一個等腰三角形.
考點:本小題主要考查橢圓方程,直線與橢圓的位置關(guān)系,橢圓的性質(zhì).
點評:本題主要考查了直線與圓錐曲線的關(guān)系的綜合問題.考查了學生轉(zhuǎn)化和化歸思想的運用,統(tǒng)籌運算的能力.
科目:高中數(shù)學 來源: 題型:解答題
已知點為軸上的動點,點為軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,,試判斷在軸上是否存在點,使得成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥軸時,求、的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的、的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本大題滿分14分)
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于.
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線于兩點,設點關(guān)于軸的對稱點為(不重合).求證直線與軸的交點為定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設雙曲線的方程為,、為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,與交于點.
(1)求點的軌跡方程;
(2)設、的離心率分別為、,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線在軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com