(本題滿(mǎn)分12分)
已知直線l:mx–2y+2m=0(mR)和橢圓C:(a>b>0), 橢圓C的離心率為,連接橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為2.
(I)求橢圓C的方程;
(II)設(shè)直線l經(jīng)過(guò)的定點(diǎn)為Q,過(guò)點(diǎn)Q作斜率為k的直線l/與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè)直線l與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),線段PM長(zhǎng)度的最大值為f(m),求f(m)的表達(dá)式.
(本題滿(mǎn)分12分)
(I)由離心率,得
又因?yàn)?sub>,所以,
即橢圓標(biāo)準(zhǔn)方程為. 4分
(II)由l:mx–2y+2m=0經(jīng)過(guò)定點(diǎn)Q(–2, 0), 則直線l/:y=k(x+2),
由 有.
所以, 可化為
解得. 8分
(Ⅲ) 由l:mx–2y+2m=0,設(shè)x=0, 則y=m, 所以P(0, m).
設(shè)M(x, y)滿(mǎn)足,
則|PM|2 =x2 +(y –m)2 =2–2y2 +(y – m )2 = –y2 –2my +m2+2
= –(y +m)2 +2m2 +2, 因?yàn)?–1y1, 所以
當(dāng)|m|>1時(shí),|MP|的最大值f(m)=1+|m|;
當(dāng)|m|1時(shí),|MP|的最大值f(m)=;
所以f(m)=. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com